
Analyzing the Performance
of Vector Databases

Jayjeet Chakraborty
UC Santa Cruz

About Me
❖ 3rd yr. PhD Student @ UC Santa Cruz
❖ Research Areas

➢ Databases and Data Management
➢ Programmable Storage Systems
➢ Hardware Software Co-Design

❖ Working with the Centre for Research in Systems and Storage, UCSC
❖ Publications

➢ Popper (CANOPIE-HPC ‘20)
➢ Skyhook (CCGrid ‘22)
➢ Apache Arrow Datafusion (SIGMOD ‘24)

❖ Internships
➢ Princeton University (IRIS-HEP); Fall 2020, Winter 2021, Spring 2021
➢ InfluxData (InfluxDB); Summer 2023
➢ NVIDIA (RAPIDs Team); Summer 2024

2

https://www.crss.us/index.html
https://ieeexplore.ieee.org/abstract/document/9297045
https://ieeexplore.ieee.org/document/9825978
https://jayjeetc.github.io/pdfs/datafusion.pdf

Background

3

Large Language Models (LLMs)

Massive “Transformer-Decoder” models

trained on large amounts of data

Specifically focussed on language

understanding and generation

Used for question answering, summarization,

content creation, code development,

translation, etc

Source: Google Images 4

Large Language Models (LLMs)

5

Large Language Models (LLMs)

6

Retrieval Augmented Generation (RAG)

Source: https://docs.trychroma.com/ 7

https://docs.trychroma.com/

Retrieval Augmented Generation (RAG)

Source: https://docs.trychroma.com/

Vector
Database

Embeddings

Vector Search

ContextPrompts

Tokens

8

https://docs.trychroma.com/

Retrieval Augmented Generation (RAG)

Source: https://docs.trychroma.com/

Vector
Database

Embeddings

Vector Search

ContextPrompts

Tokens

9

Since, vector databases sit on the critical path in LLM applications, they
should be highly performant

https://docs.trychroma.com/

Tokens / Tokenization

❖ Tokens are the basic units of data processed by an LLM
➢ Words
➢ Subwords
➢ Sentences

❖ Tokenization is the process of splitting large corpus of texts into smaller pieces or tokens
❖ Recommendations for Tokenization

➢ Simple searches, smaller chunks; Complex searches, larger chunks
➢ Larger chunks = More Context = But less tokens that fit in the LLM context window

❖ Examples of Tokenizers
➢ nltk.tokenize
➢ Hugging Face Tokenizer API
➢ BertTokenizer and AutoTokenizer from transformers

10

https://www.nltk.org/api/nltk.tokenize.html
https://huggingface.co/docs/transformers/en/main_classes/tokenizer
https://huggingface.co/docs/transformers/index#-transformers

Embeddings

Source: https://qdrant.tech/articles/what-are-embeddings/

Euclidean Space

Tokens as Vectors

Tokens from Multimodal Data

11

https://qdrant.tech/articles/what-are-embeddings/

Vector embeddings when laid
out in a multi-dimensional

space form clusters of
semantically similar tokens

Source: Generated by DALL-E 12

Top Embedding Models

Source: https://huggingface.co/spaces/mteb/leaderboard 13

Metric: Normalized Discounted Cumulative Gain
(NDCG)

https://huggingface.co/spaces/mteb/leaderboard

Scale of Embeddings

❖ OpenAI
➢ text-embedding-3-small: 1536 dims

■ 1536 * 4 bytes = 6 KB
■ 6 KB * 1B = 6 TB
■ 6 KB * 1T = 6 PB

➢ text-similarity-davinci-001: 12288 dims
■ 12288 * 4 bytes = 49 KB
■ 49 KB * 1B = 49 TB
■ 49 KB * 1T = 49 PB

Huge DRAM capacities required for processing billion / trillion scale vector
datasets

14Source: openai.com

http://openai.com

Context Windows in LLMs

The maximum amount of text in the form of “tokens” that an LLM can consider at any given
time while generating a response

15

Context Windows in LLMs

The maximum amount of text in the form of “tokens” that an LLM can consider at any given
time while generating a response

16

https://arxiv.org/pdf/2404.07143v1

Vector Databases

❖ Indexes and stores high-dimensional vector embeddings and tokens for
fast similarity searches and retrieval

❖ Consistency guarantees, multi-tenancy, cloud-native, CRUD, logging and
recovery, serverless, etc

Source: Google Images 17

Vector Databases

Relational Database Vector Database

Indexing B/B+ Tree, LSM-Tree HNSW, IVF, LSH

Compute Filter, Project, Aggregate,
Sort

ANN, KNN, Hybrid Search

Data Access Index loaded page-by-page Entire index in memory

Query Interface SQL, JDBC, ODBC Python, C++, REST APIs

Performance Metric Transactions / Second Queries / Second, Recall

How do vector databases compare to relational databases ?

18

Architecture of Vector Databases

19

Types of Vector Databases

❖ Client-Server

➢ Milvus, Qdrant, Weaviate

❖ Embedded

➢ LanceDB, Chroma, DeepLake

❖ Extensions

➢ PGVector, DuckDB Vector, Redis Vector Search

❖ Libraries

➢ FAISS, HNSWLIB, usearch, NVIDIA Raft (CAGRA)

20

http://milvus.io
http://qdrant.tech
https://weaviate.io/
https://lancedb.com/
https://www.trychroma.com/
https://www.deeplake.ai/
https://github.com/pgvector/pgvector
https://duckdb.org/2024/05/03/vector-similarity-search-vss.html
https://redis.io/docs/latest/develop/interact/search-and-query/advanced-concepts/vectors/
https://github.com/facebookresearch/faiss
https://github.com/nmslib/hnswlib
https://github.com/unum-cloud/usearch
https://github.com/rapidsai/raft

Indexing Algorithms in Vector Databases

21Source: http://thedataquarry.com/posts/vector-db-1/

HNSW

http://thedataquarry.com/posts/vector-db-1/

Indexing Algorithms in Vector Databases

22Source: http://thedataquarry.com/posts/vector-db-1/

HNSW is the Most Widely Supported Indexing Algorithm

HNSW

http://thedataquarry.com/posts/vector-db-1/

Vector Search

❖ Finding tokens similar to a query
using nearest neighbor searches

❖ Traditionally, KNN has been used
➢ But on billions / trillions of data points, not

feasible
❖ Using ANN (Approximate Nearest

Neighbor) algorithms allows trading
off accuracy for search speed

❖ Use Cases
➢ Retrieval Augmented Generation,

Recommendation Models, Classification,
Clustering

Source: Generated by DALL-E 23

Hybrid Search

❖ Hybrid search combines the results of a vector search and a keyword
search by fusing the two result sets

❖ Uses inverted index for keyword lookups and vector index for vector
similarity searches

❖ How does it work ?
➢ First, both vector and keyword search are run independently on the dataset to generate

unique top K result sets
➢ Then, the above two lists are combined in a single unified list using a special re-ranking

algorithm
■ RRF (Reciprocal Rank Fusion): Give more weight to the top-ranked item in each

individual list when building the fused list
■ Example: If a record X is ranked 3 in one list and 9 in the other, then its score would

be 1/3 + 1/9 = 0.444
➢ The items are ranked in descending order to their scores in the fused list

24

Vector Similarity Metrics

❖ Cosine Similarity

❖ Dot Product

❖ Manhattan Distance (L1)

❖ Euclidean Distance (L2)

25Source: https://www.pinecone.io/learn/vector-similarity/

https://www.pinecone.io/learn/vector-similarity/

Vector Similarity Metrics

❖ Choosing a metric ?
➢ To define similarity b/w two vectors,

follow the chart given here

➢ For indexing, use the similarity metric

used to train your embedding model

➢ For searches, use the similarity metric

used to create your index

➢ Calculation Speed

■ Manhattan > Cosine > Dot

Product > L2

26

Yes No

Vector Indexing Algorithms

❖ Flat

❖ IVF or Inverted File Index (clustering-based)

❖ LSH or Locality Sensitive Hashing (hashing-based)

❖ HNSW or Hierarchical Navigable Small Worlds (graph-based)

❖ Others
➢ Microsoft DiskANN

➢ Spotify ANNOY

➢ Google ScaNN

➢ NVIDIA Cagra

27

https://github.com/microsoft/DiskANN
https://github.com/spotify/annoy/tree/main
https://github.com/google-research/google-research/tree/master/scann
https://arxiv.org/abs/2308.15136

Flat Index

❖ Vectors simply laid out in space
❖ Perform simple K-nearest

neighbors search
❖ Search duration grows linearly, but

provides accurate results

28Source: https://www.pinecone.io/learn/series/faiss/vector-indexes/

https://www.pinecone.io/learn/series/faiss/vector-indexes/

Inverted File Index (IVF)

❖ Cluster similar vectors using
K-Means

❖ Find the centroid nearest to the
query vector, then zoom into the
cluster, and search for K-nearest
neighbors

❖ Parameters
➢ n_list: Number of cluster to create
➢ n_probe: Number of nearest clusters

to search

Source: https://towardsdatascience.com/similarity-search-knn-inverted-file-index-7cab80cc0e79 29

https://towardsdatascience.com/similarity-search-knn-inverted-file-index-7cab80cc0e79

Locality Sensitive Hashing (LSH)

❖ Hash input vectors so that
similar vectors land in the same
bucket with high probability

❖ Query is hashed using the same
hash function into the closest
buckets within which KNN is
performed

❖ Parameters
➢ nbits: No. of bits used per stored

vector (The number of hash buckets
would be 2nbits)

30Source: https://www.pinecone.io/learn/series/faiss/vector-indexes/

https://www.pinecone.io/learn/series/faiss/vector-indexes/

Hierarchical Navigable Small World (HNSW)

❖ Search
➢ We start from the top layer by picking a

node as the entrypoint
➢ Compare its neighbors with the query

vector and move the closest neighbor
➢ Once we find a local minima, we move

to the exact node in the next layer and
start the search from there

➢ The local minima that we find in the last
layer is the nearest neighbor of our
query vector

❖ Parameters
➢ ef_search : The number of nearest

neighbors searched for in every layer
Source: https://arxiv.org/abs/1603.09320

31

https://arxiv.org/abs/1603.09320

Hierarchical Navigable Small World (HNSW)

❖ Construction
➢ Calculate a layer (L) for the incoming

node using a probabilistic function
➢ Assign the node to all the layers starting

from L to 0
➢ Run the search algorithm from the

topmost layer, and connect the new
node with its nearest neighbors

❖ Parameters
➢ ef_construction : The number of

nearest neighbors searched for in every
layer

➢ M: The maximum degree allowed for
any node

Source: https://arxiv.org/abs/1603.09320
32

https://arxiv.org/abs/1603.09320

Benchmarking Vector Databases

❖ Popular Datasets

❖ Frameworks / Examples
➢ ANN Benchmarks
➢ Qdrant Vector DB Benchmarks
➢ Ziliz VectorDBBench

Dataset Dimensions Train Set Test Set Distance Metric

DEEP1B 96 1B 10K Cosine

SIFT 1M / 1B 128 1M / 1B 10K Euclidean

GIST 960 1M 1K Euclidean

GloVe 25 1.2M 10K Cosine

dbpedia-openai 1536 1M Need to split Cosine

33

https://ann-benchmarks.com
https://github.com/qdrant/vector-db-benchmark
https://github.com/zilliztech/VectorDBBench
http://sites.skoltech.ru/compvision/noimi/
http://corpus-texmex.irisa.fr/
http://corpus-texmex.irisa.fr/
http://nlp.stanford.edu/projects/glove/
https://huggingface.co/datasets/KShivendu/dbpedia-entities-openai-1M

Metrics for Comparison

❖ Queries / Second (QPS)
❖ Recall @ K

➢ # of true K-nearest neighbors / K

34
On a 100K learn / 1K query / GIST dataset / HNSWLIB

Metrics for Comparison

❖ Queries / Second (QPS)
❖ Recall @ K

➢ # of true K-nearest neighbors / K

35
On a 100K learn / 1K query / GIST dataset / HNSWLIB

With bigger context windows, Top K would only keep increasing; Need to
improve QPS at high Top K

Performance Comparison of Indexing Techniques

Index Memory (MB) Query Time
(ms)

Recall @ 10

Flat (L2 or IP) ~500 ~18 1.0

LSH 20 - 600 1.7 - 30 0.4 - 0.85

HNSW 600 - 1600 0.6 - 2.1 0.5 - 0.95

IVF ~520 1 - 9 0.7 - 0.95

HNSW is the fastest algorithm with efficient memory usage and high
recall

Source: https://www.pinecone.io/learn/series/faiss/vector-indexes/ 36
SIFT-1M-128; K = 10

https://www.pinecone.io/learn/series/faiss/vector-indexes/

Effect Of Parallelism on HNSW

Indexing and Search are parallelizable operations in HNSW
37

GIST-1M-960 / HNSWLIB

Comparison of Vector Databases Milvus
HNSWLIB

FAISS
(hnsw)

Qdrant

PGVector

Source: ann-benchmarks.com 38

Weaviate

SIFT-1M-128; K = 10

http://ann-benchmarks.com

Comparison of Vector Databases Milvus
HNSWLIB

FAISS
(hnsw)

Qdrant

PGVector

Source: ann-benchmarks.com 39

Weaviate

SIFT-1M-128; K = 10

Dedicated vector databases are more performant than vector extensions to
RDBMSs

http://ann-benchmarks.com

Profiles
(HNSWLIB, Qdrant, PGVector)

40

Machine Information

❖ Hardware
➢ Processor

■ Dual Socket Intel Xeon Silver 4114 CPU @ 2.20 GHz
■ 10 Cores / Socket
■ Hyperthreading enabled

➢ Cache
■ L1i / L1d: 640 KB
■ L2: 20 MB
■ L3: 27.5 MB

➢ Memory
■ 192 GB DDR4

❖ Software
➢ Intel VTune Profiler 2024.0.1
➢ Perf 5.4.248

41

HNSWLIB: Performance Comparison

Dataset: GIST (960)

Train / Test Split: 100K / 1K

No. of Threads: 40

Flat HNSW (ef_cons = 64,
ef_search = 100, M = 32)

Index Size 367 MB 393 MB

Index Duration 0.239 s 7.198 s

Query Duration (Top K =
100)

1.757 s 0.247 s

42

HNSWLIB: Performance Comparison

Dataset: GIST (960)

Train / Test Split: 100K / 1K

No. of Threads: 40

Flat HNSW (ef_cons = 64,
ef_search = 100, M = 32)

Index Size 367 MB 393 MB

Index Duration 0.239 s 7.198 s

Query Duration (Top K =
100)

1.757 s 0.247 s

43

Index calculation is a
highly expensive

operation as compared
to searches in HNSW

HNSWLIB: CPU Hotspot Analysis

Distance calculations (L2) takes a major chunk of the execution
time

Flat

HNSW

44

HNSWLIB: Memory Access Analysis

Instruction % of L2SqrSIMD in Flat % of L2SqrSIMD in HNSW

movups 41.18 86.74

addps 43.43 7.27

subps 0.61 1.24

mulps 7.38 0.78

45

Distance calculation (L2) in HNSW is more memory bound than
Flat due to aggressive prefetching

Qdrant: CPU Hotspot Analysis

Flat HNSW

46

Distance calculations (Dot Product) dominate the
execution time

Qdrant: Memory Access Analysis

Flat

HNSW

47
Distance calculations (Dot Product) are highly memory-bound

PGVector: Performance Comparison

Dataset: dbpedia-entities-openai-1M (1536)

Train / Test Split: 100K / 1K

No. of Threads: 1

IVF Flat (n_list = 100,
n_probe = 10)

HNSW (ef_cons = 64,
ef_search = 100, M = 32)

Index Size 782 MB 781 MB

Index Duration 27.50 s 150.24 s

Query Duration (Top K =
100)

147.63 s 89.82 s

48

https://huggingface.co/datasets/KShivendu/dbpedia-entities-openai-1M

PGVector: CPU Hotspot Analysis

HNSWIVF Flat

After distance calculations, file reads comprise a significant chunk of
the execution time 49

PGVector: Performance Comparison

Dataset: dbpedia-entities-openai-1M (1536)

Train / Test Split: 100K / 1K

No. of Threads: 1

IVF Flat (n_list = 100,
n_probe = 10)

HNSW (ef_cons = 64,
ef_search = 100, M = 32)

Index Size 782 MB 781 MB

Index Duration 27.50 s 150.24 s

Query Duration (Top K =
100)

147.63 s 89.82 s

50

Not much diff due to
high overhead of disk

access

https://huggingface.co/datasets/KShivendu/dbpedia-entities-openai-1M

PGVector: Memory Access Analysis

HNSWIVF Flat 51

compute ops dominate

PGVector: Memory Access Analysis

HNSWIVF Flat 52

CPU is waiting for disk I/O, and can’t issue memory load instructions, so its compute
bound

Future Work

● Perform billion-scale experiments / profiles (Please provide me hardware !)
● Study GPU-based indexes and their performance characteristics
● Explore offloading distance calculations to specialized accelerators
● Leverage far memory to store larger-than-memory indexes
● Explore offloading vector search to computational storage devices

53

Thank You
Questions ?

jayjeetc@ucsc.edu
jayjeetc.github.io

mailto:jayjeetc@ucsc.edu
http://jayjeetc.github.io

