

Analyzing the Performance of Vector Databases

Jayjeet Chakraborty

UC Santa Cruz

About Me

- ❖ 3rd yr. PhD Student @ UC Santa Cruz
- ❖ Research Areas
	- \triangleright Databases and Data Management
	- ➢ Programmable Storage Systems
	- ➢ Hardware Software Co-Design
- ❖ Working with the [Centre for Research in Systems and Storage](https://www.crss.us/index.html), UCSC
- ❖ Publications
	- \triangleright [Popper](https://ieeexplore.ieee.org/abstract/document/9297045) (CANOPIE-HPC '20)
	- \triangleright [Skyhook](https://ieeexplore.ieee.org/document/9825978) (CCGrid '22)
	- ➢ [Apache Arrow Datafusion](https://jayjeetc.github.io/pdfs/datafusion.pdf) (SIGMOD '24)
- ❖ Internships
	- ➢ Princeton University (IRIS-HEP); Fall 2020, Winter 2021, Spring 2021
	- ➢ InfluxData (InfluxDB); Summer 2023
	- ➢ NVIDIA (RAPIDs Team); Summer 2024

Background

Large Language Models (LLMs)

Massive "**Transformer-Decoder"** models trained on large amounts of data

Specifically focussed on language understanding and generation

Used for question answering, summarization, content creation, code development, translation, etc

Large Language Models (LLMs)

Loses Generic Capabilities

5

Large Language Models (LLMs)

Loses Generic Capabilities

Retrieval Augmented Generation (RAG)

Retrieval Augmented Generation (RAG)

Retrieval Augmented Generation (RAG)

Tokens / Tokenization

- ❖ Tokens are the basic units of data processed by an LLM
	- ➢ Words
	- $>$ Subwords
	- \triangleright Sentences
- ❖ Tokenization is the process of splitting large corpus of texts into smaller pieces or tokens
- ❖ Recommendations for Tokenization
	- \triangleright Simple searches, smaller chunks; Complex searches, larger chunks
	- \triangleright Larger chunks = More Context = But less tokens that fit in the LLM context window
- ❖ Examples of Tokenizers
	- $>$ [nltk.tokenize](https://www.nltk.org/api/nltk.tokenize.html)
	- \triangleright [Hugging Face Tokenizer API](https://huggingface.co/docs/transformers/en/main_classes/tokenizer)
	- ➢ BertTokenizer and AutoTokenizer from [transformers](https://huggingface.co/docs/transformers/index#-transformers)

Embeddings

Tokens from Multimodal Data

Vector embeddings when laid out in a multi-dimensional space form clusters of **semantically similar** tokens

Top Embedding Models

Retrieval English leaderboard

○ Metric: Normalized Discounted Cumulative Gain @ k (ndcg_at_10)

o Languages: English

Metric: Normalized Discounted Cumulative Gain (NDCG)

Scale of Embeddings

- ❖ OpenAI
	- \ge text-embedding-3-small: 1536 dims
		- \blacksquare 1536 $*$ 4 bytes = 6 KB
		- \blacksquare 6 KB $*$ 1B = 6 TB
		- 6 KB * 1T = **6 PB**
	- \ge text-similarity-davinci-001: 12288 dims
		- \blacksquare 12288 $*$ 4 bytes = 49 KB
		- \blacksquare 49 KB $*$ 1B = **49 TB**
		- $= 49$ KB $*$ 1T = 49 PB

Huge DRAM capacities required for processing billion / trillion scale vector datasets

Context Windows in LLMs

The maximum amount of text in the form of "tokens" that an LLM can consider at any given time while generating a response

Context Windows in LLMs

The maximum amount of text in the form of "tokens" that an LLM can consider at any given time while generating a response

1500000

Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention

Tsendsuren Munkhdalai, Manaal Faruqui and Siddharth Gopal Google tsendsuren@google.com

Model

Vector Databases

- ❖ Indexes and stores high-dimensional vector embeddings and tokens for fast similarity searches and retrieval
- ❖ Consistency guarantees, multi-tenancy, cloud-native, CRUD, logging and recovery, serverless, etc

Vector Databases

How do vector databases compare to relational databases ?

Architecture of Vector Databases

Types of Vector Databases

- ❖ Client-Server
	- ➢ [Milvus,](http://milvus.io) **[Qdrant](http://qdrant.tech)**, [Weaviate](https://weaviate.io/)
- ❖ Embedded
	- ➢ [LanceDB,](https://lancedb.com/) [Chroma,](https://www.trychroma.com/) [DeepLake](https://www.deeplake.ai/)
- ❖ Extensions
	- ➢ **[PGVector](https://github.com/pgvector/pgvector)**, [DuckDB Vector](https://duckdb.org/2024/05/03/vector-similarity-search-vss.html), [Redis Vector Search](https://redis.io/docs/latest/develop/interact/search-and-query/advanced-concepts/vectors/)
- ❖ Libraries
	- ➢ [FAISS,](https://github.com/facebookresearch/faiss) **[HNSWLIB](https://github.com/nmslib/hnswlib)**, [usearch,](https://github.com/unum-cloud/usearch) [NVIDIA Raft \(CAGRA\)](https://github.com/rapidsai/raft)

Indexing Algorithms in Vector Databases

@Pinecone Proprietary composite index O milvus / * zilliz Flat, Annoy, IVF, HNSW/RHNSW (Flat/PQ), DiskANN Weaviate Customized HNSW, HNSW (PQ), DiskANN (in progress...) Cldrant Customized HNSW **ElanceDB** IVF (PQ), DiskANN (in progress...) Vespa HNSW + BM25 hybrid elasticsearch Flat (brute force), HNSW redis Flat (brute force), HNSW (2) pgvector IVF (Flat), IVF (PQ) in progress... **HNSW**

Indexing Algorithms in Vector Databases

@Pinecone Proprietary composite index O milvus / * zilliz Flat, Annoy, IVF, HNSW/RHNSW (Flat/PQ), DiskANN Weaviate Customized HNSW, HNSW (PQ), DiskANN (in progress...)

HNSW is the Most Widely Supported Indexing Algorithm

Vector Search

- \triangle Finding tokens similar to a query using nearest neighbor searches
- ❖ Traditionally, **KNN** has been used
	- \triangleright But on billions / trillions of data points, not feasible
- ❖ Using **ANN** (Approximate Nearest Neighbor) algorithms allows **trading off accuracy for search speed**
- ❖ Use Cases
	- \triangleright Retrieval Augmented Generation, Recommendation Models, Classification, **Clustering**

Hybrid Search

- ❖ Hybrid search combines the results of a **vector search** and a **keyword search** by fusing the two result sets
- ❖ Uses inverted index for keyword lookups and vector index for vector similarity searches
- ❖ How does it work ?
	- \triangleright First, both vector and keyword search are run independently on the dataset to generate unique top K result sets
	- \triangleright Then, the above two lists are combined in a single unified list using a special re-ranking algorithm
		- **RRF (Reciprocal Rank Fusion)**: Give more weight to the top-ranked item in each individual list when building the fused list
		- Example: If a record X is ranked 3 in one list and 9 in the other, then its score would be $1/3 + 1/9 = 0.444$
	- \triangleright The items are ranked in descending order to their scores in the fused list

Vector Similarity Metrics

- ❖ Cosine Similarity
- ❖ Dot Product
- ❖ Manhattan Distance (L1)
- ❖ **Euclidean Distance (L2)**

Vector Similarity Metrics

- ❖ Choosing a metric ?
	- \triangleright To define similarity b/w two vectors, follow the chart given here
	- \triangleright For indexing, use the similarity metric used to train your embedding model
	- \triangleright For searches, use the similarity metric used to create your index
	- ➢ Calculation Speed
		- Manhattan > Cosine > Dot Product > L2

Vector Indexing Algorithms

- ❖ Flat
- ❖ IVF or Inverted File Index (clustering-based)
- ❖ LSH or Locality Sensitive Hashing (hashing-based)
- ❖ **HNSW or Hierarchical Navigable Small Worlds** (graph-based)
- ❖ Others
	- ➢ [Microsoft DiskANN](https://github.com/microsoft/DiskANN)
	- ➢ [Spotify ANNOY](https://github.com/spotify/annoy/tree/main)
	- ➢ [Google ScaNN](https://github.com/google-research/google-research/tree/master/scann)
	- ➢ [NVIDIA Cagra](https://arxiv.org/abs/2308.15136)

Flat Index

- ❖ Vectors simply laid out in space
- ❖ Perform simple K-nearest neighbors search
- ❖ Search duration grows linearly, but provides accurate results

Inverted File Index (IVF)

- ❖ Cluster similar vectors using K-Means
- ❖ Find the centroid nearest to the query vector, then zoom into the cluster, and search for K-nearest neighbors
- ❖ Parameters
	- \triangleright n list: Number of cluster to create
	- \triangleright n_probe: Number of nearest clusters to search

Locality Sensitive Hashing (LSH)

- ❖ Hash input vectors so that similar vectors land in the same bucket with high probability
- ❖ Query is hashed using the same hash function into the closest buckets within which KNN is performed
- ❖ Parameters
	- \triangleright nbits: No. of bits used per stored vector (The number of hash buckets would be 2^{nbits})

Hierarchical Navigable Small World (HNSW)

❖ Search

- \triangleright We start from the top layer by picking a node as the entrypoint
- \triangleright Compare its neighbors with the query vector and move the closest neighbor
- \triangleright Once we find a local minima, we move to the exact node in the next layer and start the search from there
- \triangleright The local minima that we find in the last layer is the nearest neighbor of our query vector
- ❖ Parameters
	- \triangleright ef search: The number of nearest neighbors searched for in every layer

31

Hierarchical Navigable Small World (HNSW)

- ❖ Construction
	- \triangleright Calculate a layer (L) for the incoming node using a probabilistic function
	- \triangleright Assign the node to all the layers starting from l to 0
	- \triangleright Run the search algorithm from the topmost layer, and connect the new node with its nearest neighbors

❖ Parameters

- \triangleright ef construction: The number of nearest neighbors searched for in every layer
- \triangleright M: The maximum degree allowed for any node

32

Benchmarking Vector Databases

❖ Popular Datasets

❖ Frameworks / Examples

- \triangleright [ANN Benchmarks](https://ann-benchmarks.com)
- ➢ [Qdrant Vector DB Benchmarks](https://github.com/qdrant/vector-db-benchmark)
- ➢ [Ziliz VectorDBBench](https://github.com/zilliztech/VectorDBBench)

Metrics for Comparison

- ❖ Queries / Second (QPS)
- ❖ Recall @ K
	- ➢ # of *true* K-nearest neighbors / K

On a 100K learn / 1K query / GIST dataset / HNSWLIB

Metrics for Comparison

- ❖ Queries / Second (QPS)
- ❖ Recall @ K
	- ➢ # of *true* K-nearest neighbors / K

Performance Comparison of Indexing Techniques

HNSW is the fastest algorithm with efficient memory usage and high recall

Effect Of Parallelism on HNSW

Indexing and Search are parallelizable operations in HNSW

³⁷ GIST-1M-960 / HNSWLIB

SIFT-1M-128; K = 10

Recall

Source: ann-benchmarks.com ³⁸

SIFT-1M-128; K = 10

Profiles

(HNSWLIB, Qdrant, PGVector)

Machine Information

- ❖ Hardware
	- ➢ Processor
		- Dual Socket Intel Xeon Silver 4114 CPU @ 2.20 GHz
		- 10 Cores / Socket
		- Hyperthreading enabled
	- \triangleright Cache
		- **L1i / L1d: 640 KB**
		- L2: 20 MB
		- L3: 27.5 MB
	- \triangleright Memory
		- 192 GB DDR4
- ❖ Software
	- ➢ Intel VTune Profiler 2024.0.1
	- \triangleright Perf 5.4.248

HNSWLIB: Performance Comparison

Dataset: GIST (960)

Train / Test Split: 100K / 1K

No. of Threads: 40

HNSWLIB: CPU Hotspot Analysis

Distance calculations (L2) takes a major chunk of the execution time

HNSWLIB: Memory Access Analysis

Distance calculation (L2) in HNSW is more memory bound than Flat due to aggressive prefetching

Qdrant: CPU Hotspot Analysis

Elapsed Time[®]: 122.915s \odot

\odot **Top Hotspots**

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

Elapsed Time $^\circ$: 122.332s \odot

(b) CPU Time (0: 87,370s **Total Thread Count:** 200 Paused Time 2: $0s$

Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

*N/A is applied to non-summable metrics

Flat **HNSW**

Distance calculations (Dot Product) dominate the execution time

Qdrant: Memory Access Analysis

Flat

HNSW

Distance calculations (Dot Product) are highly memory-bound

PGVector: Performance Comparison

Dataset: [dbpedia-entities-openai-1M](https://huggingface.co/datasets/KShivendu/dbpedia-entities-openai-1M) (1536)

Train / Test Split: 100K / 1K

No. of Threads: 1

PGVector: CPU Hotspot Analysis

After distance calculations, file reads comprise a significant chunk of the execution time 49

PGVector: Performance Comparison

PGVector: Memory Access Analysis

PGVector: Memory Access Analysis

CPU is waiting for disk I/O, and can't issue memory load instructions, so its compute bound

Future Work

- Perform billion-scale experiments / profiles (Please provide me hardware !)
- Study GPU-based indexes and their performance characteristics
- Explore offloading distance calculations to specialized accelerators
- Leverage far memory to store larger-than-memory indexes
- Explore offloading vector search to computational storage devices

Thank You

Questions ?

jayjeetc@ucsc.edu jayjeetc.github.io