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https://www.crss.us/index.html
https://ieeexplore.ieee.org/abstract/document/9297045
https://ieeexplore.ieee.org/document/9825978
https://jayjeetc.github.io/pdfs/datafusion.pdf


Background

3



Large Language Models (LLMs)

Massive “Transformer-Decoder” models 

trained on large amounts of data

Specifically focussed on language 

understanding and generation

Used for question answering, summarization, 

content creation, code development, 

translation, etc

Source: Google Images 4



Large Language Models (LLMs)
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Large Language Models (LLMs)
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Retrieval Augmented Generation (RAG)

Source: https://docs.trychroma.com/ 7

https://docs.trychroma.com/


Retrieval Augmented Generation (RAG)

Source: https://docs.trychroma.com/

Vector 
Database

Embeddings

Vector Search

ContextPrompts

Tokens
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Retrieval Augmented Generation (RAG)

Source: https://docs.trychroma.com/
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Since, vector databases sit on the critical path in LLM applications, they 
should be highly performant

https://docs.trychroma.com/


Tokens / Tokenization

❖ Tokens are the basic units of data processed by an LLM
➢ Words
➢ Subwords
➢ Sentences

❖ Tokenization is the process of splitting large corpus of texts into smaller pieces or tokens
❖ Recommendations for Tokenization

➢ Simple searches, smaller chunks; Complex searches, larger chunks
➢ Larger chunks = More Context = But less tokens that fit in the LLM context window

❖ Examples of Tokenizers
➢ nltk.tokenize
➢ Hugging Face Tokenizer API
➢ BertTokenizer and AutoTokenizer from transformers
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https://www.nltk.org/api/nltk.tokenize.html
https://huggingface.co/docs/transformers/en/main_classes/tokenizer
https://huggingface.co/docs/transformers/index#-transformers


Embeddings

Source: https://qdrant.tech/articles/what-are-embeddings/

Euclidean Space

Tokens as Vectors

Tokens from Multimodal Data
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https://qdrant.tech/articles/what-are-embeddings/


Vector embeddings when laid 
out in a multi-dimensional 

space form clusters of 
semantically similar tokens

Source: Generated by DALL-E 12



Top Embedding Models

Source: https://huggingface.co/spaces/mteb/leaderboard 13

Metric: Normalized Discounted Cumulative Gain 
(NDCG)

https://huggingface.co/spaces/mteb/leaderboard


Scale of Embeddings

❖ OpenAI
➢ text-embedding-3-small: 1536 dims

■ 1536 * 4 bytes = 6 KB
■ 6 KB * 1B = 6 TB
■ 6 KB * 1T = 6 PB

➢ text-similarity-davinci-001: 12288 dims
■ 12288 * 4 bytes = 49 KB
■ 49 KB * 1B = 49 TB
■ 49 KB * 1T = 49 PB

Huge DRAM capacities required for processing billion / trillion scale vector 
datasets

14Source: openai.com

http://openai.com


Context Windows in LLMs

The maximum amount of text in the form of “tokens” that an LLM can consider at any given 
time while generating a response
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Context Windows in LLMs

The maximum amount of text in the form of “tokens” that an LLM can consider at any given 
time while generating a response
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https://arxiv.org/pdf/2404.07143v1


Vector Databases

❖ Indexes and stores high-dimensional vector embeddings and tokens for 
fast similarity searches and retrieval

❖ Consistency guarantees, multi-tenancy, cloud-native, CRUD, logging and 
recovery, serverless, etc

Source: Google Images 17



Vector Databases

Relational Database Vector Database

Indexing B/B+ Tree, LSM-Tree HNSW, IVF, LSH

Compute Filter, Project, Aggregate, 
Sort

ANN, KNN, Hybrid Search

Data Access Index loaded page-by-page Entire index in memory

Query Interface SQL, JDBC, ODBC Python, C++, REST APIs

Performance Metric Transactions / Second Queries / Second, Recall

How do vector databases compare to relational databases ?
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Architecture of Vector Databases
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Types of Vector Databases

❖ Client-Server

➢ Milvus, Qdrant, Weaviate

❖ Embedded

➢ LanceDB, Chroma, DeepLake

❖ Extensions

➢ PGVector, DuckDB Vector, Redis Vector Search

❖ Libraries

➢ FAISS, HNSWLIB, usearch, NVIDIA Raft (CAGRA)
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http://milvus.io
http://qdrant.tech
https://weaviate.io/
https://lancedb.com/
https://www.trychroma.com/
https://www.deeplake.ai/
https://github.com/pgvector/pgvector
https://duckdb.org/2024/05/03/vector-similarity-search-vss.html
https://redis.io/docs/latest/develop/interact/search-and-query/advanced-concepts/vectors/
https://github.com/facebookresearch/faiss
https://github.com/nmslib/hnswlib
https://github.com/unum-cloud/usearch
https://github.com/rapidsai/raft


Indexing Algorithms in Vector Databases

21Source: http://thedataquarry.com/posts/vector-db-1/

HNSW

http://thedataquarry.com/posts/vector-db-1/


Indexing Algorithms in Vector Databases

22Source: http://thedataquarry.com/posts/vector-db-1/

HNSW is the Most Widely Supported Indexing Algorithm

HNSW

http://thedataquarry.com/posts/vector-db-1/


Vector Search

❖ Finding tokens similar to a query 
using nearest neighbor searches

❖ Traditionally, KNN has been used
➢ But on billions / trillions of data points, not 

feasible
❖ Using ANN (Approximate Nearest 

Neighbor) algorithms allows trading 
off accuracy for search speed

❖ Use Cases
➢ Retrieval Augmented Generation, 

Recommendation Models, Classification, 
Clustering

Source: Generated by DALL-E 23



Hybrid Search

❖ Hybrid search combines the results of a vector search and a keyword 
search by fusing the two result sets

❖ Uses inverted index for keyword lookups and vector index for vector 
similarity searches

❖ How does it work ?
➢ First, both vector and keyword search are run independently on the dataset to generate 

unique top K result sets
➢ Then, the above two lists are combined in a single unified list using a special re-ranking 

algorithm
■ RRF (Reciprocal Rank Fusion): Give more weight to the top-ranked item in each 

individual list when building the fused list
■ Example: If a record X is ranked 3 in one list and 9 in the other, then its score would 

be 1/3 + 1/9 = 0.444
➢ The items are ranked in descending order to their scores in the fused list
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Vector Similarity Metrics

❖ Cosine Similarity

❖ Dot Product

❖ Manhattan Distance (L1)

❖ Euclidean Distance (L2)

25Source: https://www.pinecone.io/learn/vector-similarity/

https://www.pinecone.io/learn/vector-similarity/


Vector Similarity Metrics

❖ Choosing a metric ?
➢ To define similarity b/w two vectors, 

follow the chart given here

➢ For indexing, use the similarity metric 

used to train your embedding model

➢ For searches, use the similarity metric 

used to create your index

➢ Calculation Speed

■ Manhattan > Cosine > Dot 

Product > L2
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Yes No



Vector Indexing Algorithms

❖ Flat

❖ IVF or Inverted File Index (clustering-based)

❖ LSH or Locality Sensitive Hashing (hashing-based)

❖ HNSW or Hierarchical Navigable Small Worlds (graph-based)

❖ Others
➢ Microsoft DiskANN 

➢ Spotify ANNOY

➢ Google ScaNN

➢ NVIDIA Cagra
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https://github.com/microsoft/DiskANN
https://github.com/spotify/annoy/tree/main
https://github.com/google-research/google-research/tree/master/scann
https://arxiv.org/abs/2308.15136


Flat Index

❖ Vectors simply laid out in space
❖ Perform simple K-nearest 

neighbors search
❖ Search duration grows linearly, but 

provides accurate results

28Source: https://www.pinecone.io/learn/series/faiss/vector-indexes/

https://www.pinecone.io/learn/series/faiss/vector-indexes/


Inverted File Index (IVF)

❖ Cluster similar vectors using 
K-Means

❖ Find the centroid nearest to the 
query vector, then zoom into the 
cluster, and search for K-nearest 
neighbors

❖ Parameters
➢ n_list: Number of cluster to create
➢ n_probe: Number of nearest clusters 

to search

Source: https://towardsdatascience.com/similarity-search-knn-inverted-file-index-7cab80cc0e79 29

https://towardsdatascience.com/similarity-search-knn-inverted-file-index-7cab80cc0e79


Locality Sensitive Hashing (LSH)

❖ Hash input vectors so that 
similar vectors land in the same 
bucket with high probability

❖ Query is hashed using the same 
hash function into the closest 
buckets within which KNN is 
performed

❖ Parameters
➢ nbits: No. of bits used per stored 

vector (The number of hash buckets 
would be 2nbits)

30Source: https://www.pinecone.io/learn/series/faiss/vector-indexes/

https://www.pinecone.io/learn/series/faiss/vector-indexes/


Hierarchical Navigable Small World (HNSW)

❖ Search
➢ We start from the top layer by picking a 

node as the entrypoint
➢ Compare its neighbors with the query 

vector and move the closest neighbor
➢ Once we find a local minima, we move 

to the exact node in the next layer and 
start the search from there

➢ The local minima that we find in the last 
layer is the nearest neighbor of our 
query vector 

❖ Parameters
➢ ef_search : The number of nearest 

neighbors searched for in every layer 
Source: https://arxiv.org/abs/1603.09320
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https://arxiv.org/abs/1603.09320


Hierarchical Navigable Small World (HNSW)

❖ Construction
➢ Calculate a layer (L) for the incoming 

node using a probabilistic function
➢ Assign the node to all the layers starting 

from L to 0 
➢ Run the search algorithm from the 

topmost layer, and connect the new 
node with its nearest neighbors

❖ Parameters
➢ ef_construction : The number of 

nearest neighbors searched for in every 
layer

➢ M: The maximum degree allowed for 
any node

Source: https://arxiv.org/abs/1603.09320
32

https://arxiv.org/abs/1603.09320


Benchmarking Vector Databases

❖ Popular Datasets

❖ Frameworks / Examples
➢ ANN Benchmarks
➢ Qdrant Vector DB Benchmarks 
➢ Ziliz VectorDBBench

Dataset Dimensions Train Set Test Set Distance Metric

DEEP1B 96 1B 10K Cosine

SIFT 1M / 1B 128 1M / 1B 10K Euclidean

GIST 960 1M 1K Euclidean

GloVe 25 1.2M 10K Cosine

dbpedia-openai 1536 1M Need to split Cosine
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https://ann-benchmarks.com
https://github.com/qdrant/vector-db-benchmark
https://github.com/zilliztech/VectorDBBench
http://sites.skoltech.ru/compvision/noimi/
http://corpus-texmex.irisa.fr/
http://corpus-texmex.irisa.fr/
http://nlp.stanford.edu/projects/glove/
https://huggingface.co/datasets/KShivendu/dbpedia-entities-openai-1M


Metrics for Comparison

❖ Queries / Second (QPS)
❖ Recall @ K

➢ # of true K-nearest neighbors / K

34
On a 100K learn / 1K query / GIST dataset / HNSWLIB



Metrics for Comparison

❖ Queries / Second (QPS)
❖ Recall @ K

➢ # of true K-nearest neighbors / K

35
On a 100K learn / 1K query / GIST dataset / HNSWLIB

With bigger context windows, Top K would only keep increasing; Need to 
improve QPS at high Top K



Performance Comparison of Indexing Techniques

Index Memory (MB) Query Time 
(ms)

Recall @ 10

Flat (L2 or IP) ~500 ~18 1.0

LSH 20 - 600 1.7 - 30 0.4 - 0.85

HNSW 600 - 1600 0.6 - 2.1 0.5 - 0.95

IVF ~520 1 - 9 0.7 - 0.95

HNSW is the fastest algorithm with efficient memory usage and high 
recall

Source: https://www.pinecone.io/learn/series/faiss/vector-indexes/ 36
SIFT-1M-128; K = 10

https://www.pinecone.io/learn/series/faiss/vector-indexes/


Effect Of Parallelism on HNSW

Indexing and Search are parallelizable operations in HNSW
37

GIST-1M-960 / HNSWLIB



Comparison of Vector Databases Milvus
HNSWLIB

FAISS 
(hnsw)

Qdrant

PGVector

Source: ann-benchmarks.com 38

Weaviate

SIFT-1M-128; K = 10

http://ann-benchmarks.com


Comparison of Vector Databases Milvus
HNSWLIB

FAISS 
(hnsw)

Qdrant

PGVector

Source: ann-benchmarks.com 39

Weaviate

SIFT-1M-128; K = 10

Dedicated vector databases are more performant than vector extensions to 
RDBMSs

http://ann-benchmarks.com


Profiles 
(HNSWLIB, Qdrant, PGVector) 
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Machine Information

❖ Hardware
➢ Processor

■ Dual Socket Intel Xeon Silver 4114 CPU @ 2.20 GHz
■ 10 Cores / Socket
■ Hyperthreading enabled

➢ Cache
■ L1i / L1d: 640 KB
■ L2: 20 MB
■ L3: 27.5 MB

➢ Memory
■ 192 GB DDR4

❖ Software
➢ Intel VTune Profiler 2024.0.1
➢ Perf 5.4.248
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HNSWLIB: Performance Comparison

Dataset: GIST  (960)

Train / Test Split: 100K / 1K

No. of Threads: 40

Flat HNSW (ef_cons = 64, 
ef_search = 100, M = 32) 

Index Size 367 MB 393 MB

Index Duration 0.239 s 7.198 s

Query Duration (Top K = 
100)

1.757 s 0.247 s
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HNSWLIB: Performance Comparison

Dataset: GIST  (960)

Train / Test Split: 100K / 1K

No. of Threads: 40

Flat HNSW (ef_cons = 64, 
ef_search = 100, M = 32) 

Index Size 367 MB 393 MB

Index Duration 0.239 s 7.198 s

Query Duration (Top K = 
100)

1.757 s 0.247 s
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Index calculation is a 
highly expensive 

operation as compared 
to searches in HNSW



HNSWLIB: CPU Hotspot Analysis

Distance calculations (L2) takes a major chunk of the execution 
time

Flat

HNSW
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HNSWLIB: Memory Access Analysis

Instruction % of L2SqrSIMD in Flat % of L2SqrSIMD in HNSW

movups 41.18 86.74

addps 43.43 7.27

subps 0.61 1.24

mulps 7.38 0.78
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Distance calculation (L2) in HNSW is more memory bound than 
Flat due to aggressive prefetching



Qdrant: CPU Hotspot Analysis

Flat HNSW

46

Distance calculations (Dot Product) dominate the 
execution time



Qdrant: Memory Access Analysis

Flat

HNSW

47
Distance calculations (Dot Product) are highly memory-bound



PGVector: Performance Comparison

Dataset: dbpedia-entities-openai-1M  (1536)

Train / Test Split: 100K / 1K

No. of Threads: 1

IVF Flat (n_list = 100, 
n_probe  = 10)

HNSW (ef_cons = 64, 
ef_search = 100, M = 32) 

Index Size 782 MB 781 MB

Index Duration 27.50 s 150.24 s

Query Duration (Top K = 
100)

147.63 s 89.82 s
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https://huggingface.co/datasets/KShivendu/dbpedia-entities-openai-1M


PGVector: CPU Hotspot Analysis

HNSWIVF Flat

After distance calculations, file reads comprise a significant chunk of 
the execution time 49



PGVector: Performance Comparison

Dataset: dbpedia-entities-openai-1M  (1536)

Train / Test Split: 100K / 1K

No. of Threads: 1

IVF Flat (n_list = 100, 
n_probe  = 10)

HNSW (ef_cons = 64, 
ef_search = 100, M = 32) 

Index Size 782 MB 781 MB

Index Duration 27.50 s 150.24 s

Query Duration (Top K = 
100)

147.63 s 89.82 s
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Not much diff due to 
high overhead of disk 

access

https://huggingface.co/datasets/KShivendu/dbpedia-entities-openai-1M


PGVector: Memory Access Analysis

HNSWIVF Flat 51

compute ops dominate



PGVector: Memory Access Analysis

HNSWIVF Flat 52

CPU is waiting for disk I/O, and can’t issue memory load instructions, so its compute 
bound



Future Work

● Perform billion-scale experiments / profiles (Please provide me hardware !)
● Study GPU-based indexes and their performance characteristics
● Explore offloading distance calculations to specialized accelerators
● Leverage far memory to store larger-than-memory indexes
● Explore offloading vector search to computational storage devices
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Thank You
Questions ?

jayjeetc@ucsc.edu
jayjeetc.github.io

mailto:jayjeetc@ucsc.edu
http://jayjeetc.github.io

