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The Broader Problem
● With high speed storage devices like NVMe SSDs serving upto 3GB/s and 

networks supporting 25-100Gb/s, CPU is the new bottleneck
● Client-side computation of data and reading from efficient storage formats like 

Parquet, ORC exhausts the clients CPUs 
● Leads to severely hampered scalability, latency, and throughput
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Computational Storage as a Solution
● Offload as much compute as possible to the storage layer
● Use the idle CPUs of the storage nodes to perform data filtering, decoding, 

decompression
● Accelerated queries due to reduced data movement and increased scalability
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How is our approach (Skyhook) different ?

● Most computational storage systems require hardware support like SSDs 
embedded with FPGAs for offloading compute
○ No extra hardware, use storage nodes CPU, start offloading instantly
○ Does it work ? What are the challenges ?

● Enable compute offloading in existing programmable storage systems without 
code changes
○ Easily test out computational storage with your existing storage infrastructure

● Embed data access libraries directly into the storage system
○ Offload metadata management to the storage layer
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● Provides 3 types of storage 
interface: File, Object, Block
 

● No central point of failure. Uses 
CRUSH maps that contains Object 
- OSD mapping
 

● Extensible Object storage layer via 
the Ceph Object Classes SDK 

Ceph

6



Object Class Mechanism

● Utilizing Ceph’s object class mechanism 
(“cls”)
○ Plugin-based object storage extension 

mechanism
○ Helps extend the Object store I/O path 

with User-defined functions
● Used by several Ceph internals

○ CephFS, RGW (Rados Gateway), RBD 
(Rados Block Device)

Object

Object Class 
Method

Object Store

Redundancy Layer

K/V 
Store

Chunk 
store

7



Object Class Mechanism

Object classes in Ceph

Growth of object classes in Ceph
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Apache Arrow
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Rich collection of pluggable components for building data processing systems
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Design Paradigm
● Extend client and storage layers of 

programmable storage systems 
with data access libraries

● Embed a FS shim inside storage 
nodes to have file-like view over 
objects

● Make object class extensions 
directly available to the clients 
without having to change the FS
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File Layout
● Max object size allowed by Ceph is 128MB

○ In this work, we use 64MB files as we found out it to provide the best performance
● Files larger than 64MB are split into ~64MB files

○ Each partition goes into a single RADOS object
● This 1:1 mapping between files and objects facilitates the direct translation from 

filenames to Object IDs
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Architecture
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Using Skyhook from Arrow

Skyhook supports file 
formats that are supported 
by Arrow out-of-the-box

○ Parquet, CSV, JSON, 
Feather
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Evaluations
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Query Latency

● Skyhook scales with cluster size but Parquet does not
● When Skyhook cannot benefit from scale out, serialization overhead dominates
● 100% selectivity of Skyhook results in a unnecessary packing/unpacking of 

Parquet files inside the storage nodes
○ We can simply detect 100% selectivity queries and avoid offloading to Skyhook
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CPU usage

● Skyhook provides compute access to more CPU resources improving scalability and 
performance

● Decompression of LZ4 compressed batches uses some CPU on the client side in Skyhook
● The simplicity of offloading using storage nodes CPUs trades off total CPU usage

17

Client: Thick blue line
Storage: Other lines



Network Traffic

● Skyhook prevents unnecessary 
bandwidth wastage making room for 
other applications

● Queries with 10% and 1% row 
selectivity are much faster in Skyhook 
than without Skyhook

● Bandwidth usage during 100% 
selectivity of Skyhook is little more 
than without skyhook as Skyhook 
transfers data in slightly larger  
LZ4-compressed Arrow IPC format
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Crash Recovery

● Skyhook queries are fault tolerant due 
to the integration of compute with 
storage

● Object method calls are sent to object 
names regardless of their physical 
location

● When a server crashes, method class are 
automatically restarted on another 
server with a redundant copy of that 
object
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Skyhook upstreamed in Apache Arrow !
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https://arrow.apache.org/blog/2022/01/31/skyhook-bringing-computation-to-storage-with-apache-arrow/
https://jayjeetc.medium.com/skyhookdm-is-now-a-part-of-apache-arrow-e5d7b9a810ba


Future Work
● Support RDMA to transfer result Arrow Record Batches from storage to the client

○ This is to avoid the memory-to-wire serialization overhead
● Move to embedding the Arrow Streaming Compute Engine instead of the Arrow 

Dataset API to support offloading more complex compute operations
○ Requires having a streaming interface in Ceph Object Class SDK

● Use Gandiva to accelerate Arrow query processing inside the storage layer
○ Leverage SIMD processing capabilities of modern processors
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Thank You
jayjeetc@ucsc.edu
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https://iris-hep.org/projects/skyhookdm.html
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