
SkyhookDM: Embedding Apache
Arrow inside Storage Systems

Jayjeet Chakraborty, Ivo Jimenez, Sebastiaan Rodriguez Alvarez,
Alexandru Uta, Jeff LeFevre, Carlos Maltzahn

Agenda
● Broader Problem and Solution
● Our approach
● Background
● Design and Architecture
● Evaluations

2

The Broader Problem
● With high speed storage devices like NVMe SSDs serving upto 3GB/s and

networks supporting 25-100Gb/s, CPU is the new bottleneck
● Client-side computation of data and reading from efficient storage formats like

Parquet, ORC exhausts the clients CPUs
● Leads to severely hampered scalability, latency, and throughput

3

Computational Storage as a Solution
● Offload as much compute as possible to the storage layer
● Use the idle CPUs of the storage nodes to perform data filtering, decoding,

decompression
● Accelerated queries due to reduced data movement and increased scalability

4

How is our approach (Skyhook) different ?

● Most computational storage systems require hardware support like SSDs
embedded with FPGAs for offloading compute
○ No extra hardware, use storage nodes CPU, start offloading instantly
○ Does it work ? What are the challenges ?

● Enable compute offloading in existing programmable storage systems without
code changes
○ Easily test out computational storage with your existing storage infrastructure

● Embed data access libraries directly into the storage system
○ Offload metadata management to the storage layer

5

● Provides 3 types of storage
interface: File, Object, Block

● No central point of failure. Uses
CRUSH maps that contains Object
- OSD mapping

● Extensible Object storage layer via
the Ceph Object Classes SDK

Ceph

6

Object Class Mechanism

● Utilizing Ceph’s object class mechanism
(“cls”)
○ Plugin-based object storage extension

mechanism
○ Helps extend the Object store I/O path

with User-defined functions
● Used by several Ceph internals

○ CephFS, RGW (Rados Gateway), RBD
(Rados Block Device)

Object

Object Class
Method

Object Store

Redundancy Layer

K/V
Store

Chunk
store

7

Object Class Mechanism

Object classes in Ceph

Growth of object classes in Ceph

8

Apache Arrow

9

Rich collection of pluggable components for building data processing systems

10

Design Paradigm
● Extend client and storage layers of

programmable storage systems
with data access libraries

● Embed a FS shim inside storage
nodes to have file-like view over
objects

● Make object class extensions
directly available to the clients
without having to change the FS

11

File Layout
● Max object size allowed by Ceph is 128MB

○ In this work, we use 64MB files as we found out it to provide the best performance
● Files larger than 64MB are split into ~64MB files

○ Each partition goes into a single RADOS object
● This 1:1 mapping between files and objects facilitates the direct translation from

filenames to Object IDs

12

Architecture

13

Using Skyhook from Arrow

Skyhook supports file
formats that are supported
by Arrow out-of-the-box

○ Parquet, CSV, JSON,
Feather

14

Evaluations

15

Query Latency

● Skyhook scales with cluster size but Parquet does not
● When Skyhook cannot benefit from scale out, serialization overhead dominates
● 100% selectivity of Skyhook results in a unnecessary packing/unpacking of

Parquet files inside the storage nodes
○ We can simply detect 100% selectivity queries and avoid offloading to Skyhook

16

CPU usage

● Skyhook provides compute access to more CPU resources improving scalability and
performance

● Decompression of LZ4 compressed batches uses some CPU on the client side in Skyhook
● The simplicity of offloading using storage nodes CPUs trades off total CPU usage

17

Client: Thick blue line
Storage: Other lines

Network Traffic

● Skyhook prevents unnecessary
bandwidth wastage making room for
other applications

● Queries with 10% and 1% row
selectivity are much faster in Skyhook
than without Skyhook

● Bandwidth usage during 100%
selectivity of Skyhook is little more
than without skyhook as Skyhook
transfers data in slightly larger
LZ4-compressed Arrow IPC format

18

Crash Recovery

● Skyhook queries are fault tolerant due
to the integration of compute with
storage

● Object method calls are sent to object
names regardless of their physical
location

● When a server crashes, method class are
automatically restarted on another
server with a redundant copy of that
object

19

Skyhook upstreamed in Apache Arrow !

20

https://arrow.apache.org/blog/2022/01/31/skyhook-bringing-computation-to-storage-with-apache-arrow/
https://jayjeetc.medium.com/skyhookdm-is-now-a-part-of-apache-arrow-e5d7b9a810ba

Future Work
● Support RDMA to transfer result Arrow Record Batches from storage to the client

○ This is to avoid the memory-to-wire serialization overhead
● Move to embedding the Arrow Streaming Compute Engine instead of the Arrow

Dataset API to support offloading more complex compute operations
○ Requires having a streaming interface in Ceph Object Class SDK

● Use Gandiva to accelerate Arrow query processing inside the storage layer
○ Leverage SIMD processing capabilities of modern processors

21

Thank You
jayjeetc@ucsc.edu

22

https://iris-hep.org/projects/skyhookdm.html

mailto:jayjeetc@ucsc.edu

