G SANTA CRUZ | ZEz5neerng @)iris

SkyhookDM: Embedding Apache
Arrow inside Storage Systems

Jayjeet Chakraborty, Ivo Jimenez, Sebastiaan Rodriguez Alvarez,
Alexandru Uta, Jeff LeFevre, Carlos Maltzahn

CIEOSS

Agenda

Broader Problem and Solution
Our approach

Background

Design and Architecture
Evaluations

The Broader Problem

e With high speed storage devices like NVMe SSDs serving upto 3GB/s and
networks supporting 25-100Gb/s, CPU is the new bottleneck

e C(lient-side computation of data and reading from efficient storage formats like
Parquet, ORC exhausts the clients CPUs

e Leads to severely hampered scalability, latency, and throughput

Computational Storage as a Solution

e Offload as much compute as possible to the storage layer

e Use the idle CPUs of the storage nodes to perform data filtering, decoding,
decompression

® Accelerated queries due to reduced data movement and increased scalability

How is our approach (Skyhook) different ?

e Most computational storage systems require hardware support like SSDs
embedded with FPGAs for offloading compute

o No extra hardware, use storage nodes CPU, start offloading instantly
o Does it work ? What are the challenges ¢

e Enable compute offloading in existing programmable storage systems without
code changes
o Easily test out computational storage with your existing storage infrastructure

e Embed data access libraries directly into the storage system

o Offload metadata management to the storage layer

Ceph

Provides 3 types of storage
interface: File, Object, Block

LIBRADOS
No central point of failure. Uses Abrary alowing

apps to directly

CRUSH maps that contains Object |G

- OSD mapping o
Extensible Object storage layer via
the Ceph Object Classes SDK

RADOS

RADOSGW

A bucket-based REST
gateway, compatible with
S3 and Swift

=
e

RBD

A roliable and fully-
distributed block device,
with a Linux kernel client
and a QEMU/KVM driver

CLIENT

CEPHEFS

A POSIX-compliant
distributed file system,
with a Linux kernel client
and support for FUSE

A reliable, autonomous, distributed object store comprised of self-healing, self-managing, intelligent storage
nodes

Object Class Mechanism

e Utilizing Ceph’s object class mechanism
(“cls”)
o Plugin-based object storage extension
mechanism
o Helps extend the Object store I/O path
with User-defined functions
e Used by several Ceph internals
o CephFS, RGW (Rados Gateway), RBD
(Rados Block Device)

Object

Object Store

Chunk K/V
store Store

Object Class Mechanism

¥ master - ceph/src/cls/ Go tofile Add file

(a krunerge cls/rbd: fix log text for children list .. v 0089dce 10 daysago O History

Obj e Ct Cl a S S e S in C ep h 2pc_gueue cls: build without "using namespace std" last month

cas cls: build without "using namespace std" last month
cephfs cls: Build ceph-osd without usin espace declarations in headers 2 years ago
cmpomap cls/cmpomap: empty values are 0 in U64 comparisons last month
fifo cls: build without "using namespace std" last month
hello cls: Build ceph-osd without using namespace declarations in headers 2 years ago
journal clsfjournal: use EC pool stripe width for padding appends 17 months ago
lock cls: build without "using namespace std" last month
EEm Classes

23 Methods
—— LOC (C++)

log rgw: Factor out tool to deal with different log backing 6 months ago

lua cls: build without "using namespace std" last month

numops cls: Build ceph-osd without using namespace declarations in headers 2 years ago

Interface Count
A
S
=1
=3
o
Lines of Code

o
8

-4— Growth of object classes

2014
Sample Date

Apache Arrow

Allocators and
Buffers

Binary IPC
Protocol *

Columnar Data

Structures and
Builders

CUDA Interop

Plasma:
Shared Mem
Object Store

‘ Gandiva: LLVM
Expr Compiler

Rich collection of pluggable components for building data processing systems

Compute Kernels

Data Frame
Interface

Embeddable
Query Engine

Flight RPC

Datasets
Framework

*

Multithreading
Runtime

File Format Interfaces

AVRO *

csv JSON

10 / Filesystem Platform

Compressor
Interfaces *

PARQUET

localfs mmap Azure

... and much more

AWS S3 HDFS GCP

Arrow components

<«— Red means planned / * *— sed by Skyhook

under construction work

Design Paradigm

Extend client and storage layers of
programmable storage systems
with data access libraries

Embed a FS shim inside storage
nodes to have file-like view over
objects

Make object class extensions
directly available to the clients
without having to change the FS

Application Data Access Libraries

- = -

1
extension

I_}__

POSIX Interface ;DOAL method

Direct Object Access Layer (DOAL)

Data Access Libraries

Object Store

11

File Layout

e Max object size allowed by Ceph is 128 MB

o In this work, we use 64MB files as we found out it to provide the best performance

e Files larger than 64MB are split into ~64MB files
o Each partition goes into a single RADOS object

e This 1:1 mapping between files and objects facilitates the direct translation from
filenames to Object IDs

abce.parquet Header Magic Bytes

bject.0
Header Magic Bytes ‘ e

Row Group
[|
Row Group Footer Metadata abc.parquet.0
Split into <=128 MB RADOS
Parquet Files with Header Magic Bytes " Object
Row Group Sing?e Row Groups g Pl :
> Row Group ‘

File

[‘ ‘ Parquet

| abc.parquet.1
Row Group Footer Metadata parq
Footer Metadata Header Magic Bytes
Footer Magic Bytes Row Group ‘
|

Multi-Gigabyte Parquet File abc.parquet.2
et q Footer Metadata S 12

object.2

Architecture

Application

Dataset API Parquet

to
IPC/LZ4
B File
IPC/LZ4 File Format Writer

I (lephFS

libradc's

Arrow

Objects

query

<100%

100%

selectivity selectivity

Object

Serialization

Arrow

IPC/LZ4 File

Format
FS Shim

Object Store

Chunk
store

K/V

Store

13

Using Skyhook from Arrow

Reading from Parquet
import pyarrow.dataset as ds
format__ = "parquet"
dataset = ds.dataset (
"/dataset", format=format__ Skyhook Supports ﬁle
)
dataset.to_table () formats that are supported

Reading from Parquet using Skyhook by Arrow Out"Of"the"bOX

import pyarrow.dataset as ds

format__ = ds.SkyhookFileFormat (

"parquet", "/ceph.conf" © Parquet’ CSV, JSON’
) Feather
dataset = ds.dataset (

"/dataset", format=format_

)
dataset.to_table ()

14

Evaluations

Query Latency

16 Nodes

25 50 75 99 100 1 10 25 50 75 99 100 1 10 25 50 75 99 100
Selectivity (%) Selectivity (%) Selectivity (%)
[Without skyhook I With skyhook

e Skyhook scales with cluster size but Parquet does not
e When Skyhook cannot benefit from scale out, serialization overhead dominates
e 100% selectivity of Skyhook results in a unnecessary packing/unpacking of

Parquet files inside the storage nodes

o We can simply detect 100% selectivity queries and avoid offloading to Skyhook »

CPU usage

Without Skyhook With Skyhook Client: Thick blue line
Storage: Other lines

=
N
o

100

()]
o

8
(V]
e
T 80
)
|
o
(@]

N B
o O

200 300 300
Timestamp (s) Timestamp (s)

e Skyhook provides compute access to more CPU resources improving scalability and
performance

e Decompression of LZ4 compressed batches uses some CPU on the client side in Skyhook

e The simplicity of offloading using storage nodes CPUs trades off total CPU usage

17

Network Traffic

e Skyhook prevents unnecessary
bandwidth wastage making room for
other applications

e Queries with 10% and 1% row
selectivity are much faster in Skyhook
than without Skyhook

e Bandwidth usage during 100%
selectivity of Skyhook is little more
than without skyhook as Skyhook
transfers data in slightly larger
LZ4-compressed Arrow IPC format

(o]
o
o

(o)}
o
o

N
o
o

m
o
m
=
5
2 400
c
(@)]
>
(@)
| -
e
|_

200

400
Timestamp

Without Skyhook
—— With Skyhook

600 800
(s)

18

Crash Recovery

Skyhook queries are fault tolerant due
to the integration of compute with
storage

Object method calls are sent to object
names regardless of their physical
location

When a server crashes, method class are
automatically restarted on another
server with a redundant copy of that
object

)

[e0]
o
o

0
o
m
=
]
=
Q.
c
(@)}
S
o
o
c
=

100 150 200
Timestamp (s)

250

300

19

Skyhook upstreamed in Apache Arrow !

Skyhook: Bringing Computation to
Storage with Apache Arrow

31Jan 2022

Jayjeet Chakraborty, Carlos Maltzahn, David Li, Tom Drabas

CPUs, memory, storage, and network bandwidth get better every year, but increasingly, they’re
improving in different dimensions. Processors are faster, but their memory bandwidth hasn’t
kept up; meanwhile, cloud computing has led to storage being separated from applications across
a network link. This divergent evolution means we need to rethink where and when we perform
computation to best make use of the resources available to us.

SkyhookDM is now a part of Apache Arrow!

APACHE

We are happy to announce that Skyhook Data Management is now officially a
part of the Apache Arrow project mainline and is planned to be included in
release 7.0.0. SkyhookDM is a plugin for offloading computations involving data
processing operations into the storage layer of distributed and programmable

object storage systems. It is be’ .. aintained by researchers at

20

https://arrow.apache.org/blog/2022/01/31/skyhook-bringing-computation-to-storage-with-apache-arrow/
https://jayjeetc.medium.com/skyhookdm-is-now-a-part-of-apache-arrow-e5d7b9a810ba

Future Work

e Support RDMA to transfer result Arrow Record Batches from storage to the client

o This is to avoid the memory-to-wire serialization overhead

e Move to embedding the Arrow Streaming Compute Engine instead of the Arrow

Dataset API to support offloading more complex compute operations
o Requires having a streaming interface in Ceph Object Class SDK

e Use Gandiva to accelerate Arrow query processing inside the storage layer

o Leverage SIMD processing capabilities of modern processors

21

Thank You

jayjeetc@ucsc.edu

https://iris-hep.org/projects/skyhookdm.html

mailto:jayjeetc@ucsc.edu

