Open Source Contribution 101

Jayjeet Chakraborty

This 1s more of a chit chat. Feel free to
jump In any time.

About me (real quick)

 PhD student in CSE (Fall 2021 -god knows)

 Data management, databases, storage, systems
 Google Summer of Code Student 2019
 Google Summer of Code and OSRE Mentor 2020

Google
Summer of Code

 Been working on open-source projects in my research since then..

Agenda

* Why contribute to Open source
 How to start
My experience with Open Source

* Tips and Best practices

Why Open Source ?

Don’t have the skills for
this project

Code looks like

| am scared of
large codebases

- - T W - -

I..Ilm.hm:.‘.mllll'l‘

| can work on any project.
Will figure stuff out

Why Open Source ?

 Enhance your programming skills from code reviews
* | earn taking ownership of a project or a part of a project

» |earn different concepts like project structuring, testing, CIl/CD,
benchmarking

» |earn different tools and technologies fast and broaden your skill set
o Stay updated about the latest tech in your domain

* (Go from a web/android/foo/bar developer to a developer

Why O

 Enhance

e Learn taki

e | earn diffe
benchmat

e |Learn diffe
o Stay upde

e Go from a

A JACK OF
ALL TRADES
IS A MASTER

OF NONE

BUT OFTENTIMES
BETTER THAN A
MASTER OF
ONE

>

et

Why Open Source ?

* (Get involved with large communities and well-known people/developers
 Apache software foundation, CNCF, Mozilla, The Linux foundation

* Attend conferences, make connections, travel the world for free (mostly)

 Maybe get the next break in your career

Why Open Source ?

 Make a stronger case during job interviews
 Mostly doesn’t work for big tech or MAANG

» Jargeted or core tech companies love seeing real work sample, show ‘em
your contributions, drive the interview

* Never do leetcode again !

* (Get several years of head start than your non-OS colleagues

Why Open Source ?

» Become a freelance consultant for a fast growing open source project

 Devs and researchers are always looking for help with open source
projects/codebases and the number is much more than you think

The estimated total pay for a Freelance Consultant is $89,814 per
year in the United States area, with an average salary of $61,524

per year. These numbers represent the median, which is the
midpoint of the ranges from our proprietary Total Pay Estimate
model and based on salaries collected from our users.

Why Open Source ?

* Open source programs -> research projects -> researchers (PhD students/
Postdocs) -> professors—> universities -> grad school -> more amazing
stuff !

 This is what | did though..

imgfiip.com

RHOWDO,_
START-THOUGH 2

-

Do these now (if not already done)

e Move to Ubuntu/Mac/WSL
e [earn UNIX shell
o Learn Git, GithubSStop using GUIs

* Practice using these in your daily life

Here’s how

Don’t drop this class

Participate in Open Source student programs

Clean up your class projects, push them to github, and maintain them

* Build your open-source profile

Make a habit of finding the source code of any project that you use or interests you
* Fix a small bug or implement a feature

Whenever you face an issue while using an open source project

* Raise an issue

 Don’t stop there, ask how to fix it

e Raise a fix

Applying to Open Source programs

o Start looking for open-source student programs: GSoC, OSRE,
Outreachy ,MLH Fellowship, Linux kernel mentorship program, GirlsScript
Summer of Code, IRIS-HEP Fellowship.

o Start 3-4 months before, look for projects, reach out to maintainers, show
your interest, ask for guidance on how to start

* FInd a simple issue to start with, keep doing more and more till the proposal
deadlines. Keep the talking going on chat, PRs, emails, etc

 Make a strong case in your proposal showing off your work and get
accepted !

https://summerofcode.withgoogle.com/
https://ospo.ucsc.edu/osre/
https://www.outreachy.org/
https://fellowship.mlh.io/
https://wiki.linuxfoundation.org/lkmp
https://gssoc.girlscript.tech/
https://gssoc.girlscript.tech/
https://gssoc.girlscript.tech/
https://gssoc.girlscript.tech/
http://iris-hep.org

" ‘
]
o~ -

" ‘{\
———
- ' \‘

Some OSS projects that made it...

@ <
ceph databricks

Acquired by RedHat for $600M revenue in FY 2021. Raised $12M in Series A
$175M Soon about to IPO funding

My experience with Open
Source

Some Tips and Best practices on..

e ..reading the codebase
e ..setting up the dev env
e _.writing aesthetic code

e ..contributing your code

Reading the codebase

First dive into a largish OSS project

1. Find the homepage/github repo readme and give the introduction section a
quick read, maybe read a paper, or watch related videos on YouTube.

2. If there is a concept/features/design/architecture page, read it. It’s okay if
you don’t understand all of it at once.

3. Look at getting started, usage guides, and example codes if any to get some
idea of the AP| and how the project is used by the end users.

4. That’s enough. Open the source code now.

23

https://pncnmnp.github.io/blogs/oss-guide.html

First

OPENISOURCERENAETERISEEING

quick
2. If the ay If
YOu C —
3. Look | . Q et some
idea ¢ .
'(’l 2’ '
4. That’ — > 1

k3

> -

https://pncnmnp.github.io/blogs/oss-guide.html

Get a feel of the source code

 Don’t try to understand/read the source code all at once. | tried that, didn’t
work.

* Clone the source code or open github.dev (opens a vscode instance instantly
in the browser and lets you browse the source code without cloning).

* [ry to understand the high-level code structure, specifically find these things

 Header files, Source files, Build scripts, Tests (Unit and Integration), Assets,
3rd Party Libs, Modules, Tools, Utilities, CI/CD tools, and config, etc.

* Now, either find the entry point of the code, like the main() function or use
keywords in the issue to find the concerned source files.

25

Start dissecting the code

» After you narrowed down to a set of files)(, search for
keywords inside the file. If not, ask someone on to

help you find a place to start.

 Bottom-Up Approach: Use the find feature to track
down the function/class/method you are interested In.
Try to backtrack from there, see what fn calls what,
and mentally create a control flow of the program.

* Again, do this just enough to be able to start making

code changes.

26

SkyhookFileFormat

Replace

files to include

cpp/src/skyhook

files to exclude

v

vV

file_skyhook.cc cpp/src/skyhook/cli... (13
class SkyhookFileFormat::Impl {
arrow::Result<std::shared_ptr<SkyhookFile...
shared_ptr<SkyhookFileFormat>> Skyhook...
std::make_shared<SkyhookFileFormat>(st...
SkyhookFileFormat::SkyhookFileFormat(st...
SkyhookFileFormat::SkyhookFileFormat(st...
SkyhookFileFormat::~SkyhookFileFormat() ...

SkyhookFileFormat::~SkyhookFileFormat() ...
arrow::Status SkyhookFileFormat::Init() { re...

shared_ptr<arrow::Schema>> SkyhookFile...
dataset::ScanTasklterator> SkyhookFileFor...
SkyhookFileFormat::DefaultWriteOptions() {
arrow::dataset::FileWriter>> SkyhookFileFo...
file_skyhook.h cpp/src/skyhook/client 6
//] \class SkyhookFileFormat
class SkyhookFileFormat : public arrow::da...
arrow::Result<std::shared_ptr<SkyhookFile...
SkyhookFileFormat(std::shared_ptr<Rados...
~SkyhookFileFormat() override;
[// \brief Initialize the SkyhookFileFormat by...
cls_skyhook_test.cc cpp/src/skyhoo... ' 2
std::shared_ptr<skyhook::SkyhookFileFor...

skyhook::SkyhookFileFormat::Make(rados_...

Setting up the “dev env”

Portable and reusable development environment

 |f possible, work inside a Docker container or a Vagrant box (Virtual Machine).

* Create a Dockerfile with all the project dependencies and build tools installed and
mount it to a local working directory that has the repo cloned.

e docker run -it dev env -v SPWD:/workspace -w /workspace bash
e sh# ./build.sh

e sh# ./test.sh

e Code on your local machine but build and test inside a Docker container.

>

vacrant OOCK@(

28

https://docker.io

Create a fast build/test workflow

 Use a DEBUG build for development with logging and tracing enabled but for
benchmarking make sure to use a RELEASE build.

* First time compilation can be slow.

* Try switching off the build of some components that you don’t need using
CMake flags or alike.

« Use multiple threads. make -j$(nproc).

 Automate every command run by dumping them in scripts like build.sh and
test.sh as in the prev slide.

29

Create afas

 Use a DEBUG build ing enabled but for

benchmarking make = .
* First time compillatic

* Try switching off RS
CMake flags or al

don’t need using

 Use multiple three

 Automate every co like build.sh and

test.sh as in the pre /;4 Q =
. ME WAITIN
HIII MY ﬂﬂni 10 Bllllll

Leverage CI/CD

» Keep checking CI/CD results after every commit; catch issues early

* Make sure your exact changes/tests are getting executed through CI/CD

 Run the same CI/CD job on different OS versions, architectures, and compiler versions
e Linux, mac
e X806, amdo4, armo4
e g++11, g++14, g++17, python3.5, python3.7, python3.9

31

Leve

o Keep ¢

 Make :

* Run th
e Lin
e X806.

* g++

My new function
runs fine locally

everything
except my
function fails on CI

T

versions

Writing aesthetic code

The easier part

Making code changes

 Now that you have narrowed down to the function/class to add/modity, it’s
time to write your code

ook at the already written code and follow those practices for your added
code. If some syntax/keyword seems alien, a quick google helps

* Follow the naming conventions, code organisation, error handling strategies,
and other practices followed, so that you don’t lose track of your own code
eventually

* Don’t focus way too much on code quality at the beginning though. Getting
things to compile and start working is the most important

34

Making code changes

 Now that you have narrowed down to the function/class to add/modity, it’s
time to write your code

| IS . Bl

| ook at the already ‘Yces for your added
code. If some syntax Basically, do a brain dump in a pgle helps

| somewhat consistent and | |
* Follow the naming c aesthetic manner r handling strategies,

and other practices k of your own code
eventually

* Don’t focus way too much on code quality at the beginning though. Getting
things to compile and start working is the most important

35

Making code changes

* [ry to keep the number of added lines more than modified lines. Find out the
correct classes to inherit or the correct functions to implement for this.

* Helps with rebase and less scrutiny during code review.

* Jo achieve this, take some time to compare and contrast the different ways
you can implement your changes/feature. Find out a strategy that requires
minimum lines of code.

* The simpler your changes the more chances of it being bug-free and fast.

36

Some coding best practices...

* Variable names should make sense. Don’t use names like x, temp, mynum
* Avoid duplicated code. Create reusable functions/classes

 Handle exceptions. Write clear error messages

* Delete commented code (aka dead code) blocks before raising a PR

* Avoid hardcoding parameters

» Keep adding comments/docstrings to your code

« Commit code continuously with a somewhat descriptive message

* Always work on an experimental change in a new branch, test then
branch, if works, raise PR to main branch

 The idea Iis to make your code indistinguishable from the previously
written code

37

Som

Variable
Avoid d
Handle ¢
Delete c
Avoid he
Keep ad
Commit .
- bt
Always \ ‘
s YOUAREAOGCODER NOW
The idec i % v -

written ok

38

Contributing your code

WHEN YOU REALIZE YOU HEEII T10GO 'I'IIIIIIIIGII A
MONTH lﬂHG IIHI!W CYCLE FOR YOUR CODE T0 BE| IIElEASEII

imgflip.com

Raising a PR

 Name your branch either meaningfully or point to an issue.
* support-csv-input
e fix-4567
* Give a self-explanatory PR title.
« PROJECT-4567: [C++][FileReader] Support reading CSV files
* Or just follow the guidelines for your specific project
* Write a brief description of code, tests, and CIl/CD changes.

* Ensure Cl build/test is passing.

41 https://www.pullrequest.com/blog/writing-a-great-pull-request-description/

Ra I SI n g a P rAdded password reset functionality #1-123 #1

1‘1 Open

ognus wants to merge 1 commit into main from feature [°]

) Conversation 0 - Commits 1 =l Checks 0 %] Files changed 1

® Name your branCh eitt @\‘ ognus commented 2 minutes ago e

What

* support-csv-input
e fix-4567
Give a self-explanator
« PROJECT-4567: [C-
Or just follow the gt
* Write a brief descriptic

e Ensure CIl build/test is

Added password reset support. It includes Ul changes, new API endpoints, and DB schema changes. See ticket #1-123 for
details.

Why

We need it to complete the user auth epic #E-123.

How

Password reset implementation. On user’s request it sends an email with a one-time-use URL to reset the password. See
ticket #1-123 for details.

When testing locally, run the migrations and re-install server dependencies.

Changes details

Added new migrations file 1.0.1-password-reset.sql that creates a new table password_reset_code .

dded new dependency to the server: uuid-short .

Added /auth/reset-password and /auth/confirm-password endpoints to the server.

Added PasswordResetController that calls the /auth/reset-password and /auth/confirm-password endpoints.
Updated LoginView to include a password reset button.

Added a new page for password reset initiation PasswordResetView .

Added a new page for new password creation NewPasswordView .

Missed anything?

Explained the purpose of this PR.

Self reviewed the PR.

Added or updated test cases.

[J Informed of breaking changes, testing and migrations (if applicable).
() Updated documentation (if applicable).

() Attached screenshots (if applicable).

42 https://www.pullrequest.com/blog/writing-a-great-pull-request-description/

Raising a PR: Tip #1

 Make sure the code is linted before opening a PR. Try to keep the code linted
after every code review change.

Clang |Int©
Powe r Too I.S +0-4-9<> Star your Python code!

43

Raising a PR: Tip #2

 |f not already maintaining descriptive commit messages, rewrite your commit
history to have small meaningful commits if you have more than 100 lines of
code changes.

pick do5elcb Added debugging code. To be removed.

pick 5a9126e Step 2

pick e7131a5 Found bug. Really? A tab vs. space ‘issue?
pick 43e0adc Oops. Forgot to remove debugging code.

Rebase e0@03543..43ePadc onto ePP3543

Commands:
pick = use commit
reword = use commit, but edit the commit message
edit = use commit, but stop for amending
squash = use commit, but meld into previous commit
fixup = like "squash", but discard this commit's log message
exec = run command (the rest of the line) using shell

#
#
#
#
#
#
#
#
#

These lines can be re-ordered; they are executed from top to bottom.
If you remove a line here THAT COMMIT WILL BE LOST.

However, 1if you remove everything, the rebase will be aborted.

H W W R R W W

Note that empty commits are commented out

44

https://www.atlassian.com/git/tutorials/rewriting-history
https://www.atlassian.com/git/tutorials/rewriting-history
https://www.atlassian.com/git/tutorials/rewriting-history
https://www.atlassian.com/git/tutorials/rewriting-history

Raising a PR: Tip #2

 |f not already maintaining descriptive commit messages, rewrite your commit

history to have small meaningful commits if you have more than 100 lines of
code changes.

Goal is to make it easy for a
maintainer to look at your PR

, pick = use commit

, reword = use commit, but edit the commit message

, edit = use commit, but stop for amending

, squash = use commit, but meld into previous commit

, Ffixup = like "squash", but discard this commit's log message
, exec = run command (the rest of the line) using shell

These lines can be re-ordered; they are executed from top to bottom.
If you remove a line here THAT COMMIT WILL BE LOST.

However, 1if you remove everything, the rebase will be aborted.

H W W R R W W

Note that empty commits are commented out

45

https://www.atlassian.com/git/tutorials/rewriting-history
https://www.atlassian.com/git/tutorials/rewriting-history
https://www.atlassian.com/git/tutorials/rewriting-history
https://www.atlassian.com/git/tutorials/rewriting-history

Getting your PR approved

* [ry to address review changes as soon as

possible.
. ‘e : ° Changes approved Hide all reviewers
* Reply to any questions/clarifications or ask
queStiOnS in a hedging Ianguage always. v ﬁ nplasterer approved these changes See review Dismiss review
v L jessicard approved these changes See review Dismiss review
» After addressing requested changes, use the @ A1 hecs have passed

*Request Review” feature of Github.

° This branch has no conflicts with the base branch

Merging can be performed automatically.

 |If your PR is lying unreviewed for a some time,
don,t heSitate to give a gentle reminder by VSTl [T (XS @R You can also open this in GitHub Desktop or view comman d line instructions.
tagging some maintainers on the PR.

» Keep your eye open for merge conflicts and keep
resolving them regularly to keep the review cycle

going.

46

https://objectpartners.com/2021/09/09/how-to-get-your-pull-requests-approved-more-quickly/

Getting your PR approved

* [ry to address review changes as soon as
possible.

* Reply to any questions/cll?,tiﬁ:aﬂanmsk
queS'“OnS |n a hedg|ng Ia . Wrovedthesechanges See rev iew Dismiss rev iew
Getting a PR accepted aftera }-ioo- S
o ,f\fter addressing f,equest long review cycle is one of the [
Request Review” featur :
best feelings. Trust me.

. no conflicts with the base branch
Jormed automatically.

* |If your PR is lying unrevie
don’t hesitate to give a gentle reminder by
tagging some maintainers on the PR.

ull request a8l You can also open this in GitHub Desktop or view command line instructions.

» Keep your eye open for merge conflicts and keep
resolving them regularly to keep the review cycle

going.

47

https://objectpartners.com/2021/09/09/how-to-get-your-pull-requests-approved-more-quickly/

Show all checks

s
, MEREALIZING | NEED TO REFAGTOR
‘ALL OF MY ORIGINAL CODE CHANGES ™

mgfip.com

https://objectpartners.com/2021/09/09/how-to-get-your-pull-requests-approved-more-quickly/

WHEN YOUR PR
GETS AGGEPTED

Try contributing to OSS for once'!
You will not regret.

Thank You!

Questions or Comments ?

jayjeetc@ucsc.edu 51

mailto:jayjeetc@ucsc.edu

Adding tests

* |Integration tests:

e Jest your functionality end-to-end with dummy input data.

o Start single-node minimal clusters/daemons in Cl when needed. Make sure
starting services in Cl does not fail abruptly.

 Maybe, introduce some sleep between different daemons start.
* [ry to capture some frequently used scenarios in the tests.

* No such tools required, mostly bash scripting and UNIX utilities.

52

Adding tests

e Unit tests:

* Create a matrix with different kinds of input to a function. Write a test case for each of
them.

 (Capture both if and then statements. Same for all the cases of a switch.
» Use testing frameworks like GTest for C++ or PyTest for Python.
* While writing unit tests, extract common functionality into utility functions.

 |f possible, use coverage checking tools like CodeCov to check test coverage.

€A Codecov e

53

Debugging code

* Print statements generally work great but not always

)
-
C
D
=
-
o,
O
o)
=
2
-
D
d
o,
O
d
O
e
O
D
Q.
)
-
p
D
-
e
C
=
O
d
=
o,
-
©
Z
o

 Use Logging and error handling in your code.

 Debugging tools:

54

* Profilers and flame graphs. Collects and plots stack traces, helps figure out
code paths and relative time taken by each function.

* Valgrind, gdb. Helps with memory leaks and SIGSEVSs.

Debugging code

aaaaaaaaaa

* Print statements generally work great but not always

e Narrow down the suspected code using comments Py , i . Ny

. Use Logging af
> HOIIINg Log the heck out. Not only works 99%

* Debugging too| of the time but leaves you with a better |
understanding of your code

* Valgrind, gd
_/

* Profilers and flame graphs. Collects and plots stack traces, helps figure out
code paths and relative time taken by each function.

55

