
EmuCXL: A Emulation Framework for
CXL-based Disaggregated Memory

Applications
Raja Gond and Purushottam Kulkarni

IIT Bombay

Problems

1. No standard APIs for building applications on CXL-attached memory
2. APIs developed in industry but mostly proprietary
3. Difficulty in finding easy to use CXL memory emulation setups
4. No open-source way to get a end-to-end CXL-attached memory emulation

going

Architecture of CXL-based Disaggregated Memory

Implementation of EmuCXL

1. A VM with NUMA-based emulation setup
a. Similar to Pond
b. A 2-socket server as the underlying hardware
c. A 2-node QEMU + KVM virtual machine

i. 1st vNode mapped to socket 1’s CPU and Memory
ii. 2nd vNode mapped to socket 2’s Memory only

2. An software setup with a standardized API for CXL-style memory pooling
a. A user-space library
b. A kernel backend implemented as a Kernel module

https://github.com/cloudarxiv/emucxl

Virtual Appliance Setup using QEMU

User-Space APIs in the EmuCXL library

Kernel Backend

1. Implemented as a Loadable Kernel Module
2. Added IOCTL commands

a. EMUCXL_INIT, EMUCXL_EXIT, EMUCXL_ALLOC, EMUCXL_FREE
3. Upon loading the kernel module:

a. A char device (/dev/emucxl) is created and registered within the kernel
4. The char device implements open, close, mmap, and ioctl operations in the file_operations struct
5. In the NUMA-aware mmap operation, memory is allocated using kmalloc_node on the NUMA node and is mapped

to a user address space using remap_pfn_range
6. To avoid swapping the pages out, the PG_reserverd bit is set on the mapped pages using SetPageReserved
7. emucxl_alloc uses this NUMA-aware mmap, emucxl_free uses munmap/ioctl(EMUCXL_FREE), and

emucxl_init and _exit uses open/ioctl(EMUCXL_INIT) and close/ioctl(EMUCXL_EXIT) respectively

Control Flow of EmuCXL

EmuCXL Application Layers

EmuCXL Applications

1. Direct Access
a. Applications that make call directly to the user-space emucxl APIs
b. The management of local and remote memory is embedded with the logic of the applications
c. Authors implement a Queue using the EmuCXL library

i. They report numbers for a Queue entirely in the local memory
ii. And another queue entirely in the remote memory
iii. They don’t discuss a local + remote unified queue or any policies to transparently move

elements between them

Reported timings for 15K operations each

EmuCXL Applications

1. Middleware Driven Usage
a. Key Value Store:

i. A Key-Value store uses the EmuCXL library and its API to provide GET, PUT, DELETE
semantics to applications

ii. Access Semantics:
1. GET: First search for a key in local memory and if not found search in remote

memory. If a key is frequently accessed, move it from remote to local memory
using a LRU eviction policy for the local memory

2. PUT: First added to the local memory, if local memory is exhausted, move to
remote memory using LRU

3. DELETE: Search for the key to delete in local first, then search in remote

Thank You !

