EmuCXL: A Emulation Framework for
CXL-based Disaggregated Memory
Applications

Raja Gond and Purushottam Kulkarni

[IT Bombay

Problems

No standard APls for building applications on CXL-attached memory

APIs developed in industry but mostly proprietary

Difficulty in finding easy to use CXL memory emulation setups

No open-source way to get a end-to-end CXL-attached memory emulation

going

LN~

Architecture of CXL-based Disaggregated Memory

DDR Host
Host : : 0s
Memory Internal |10
~80-140ns Devices CPU | .| CPU
Cort:: Core

| CXL Controller
CXL CXL.io I CXL.mem [

Remote : : :
PCle PHY

Memory ~170-250 ns

Implementation of EmuCXL

1. A VM with NUMA-based emulation setup

a. Similar to Pond

b. A 2-socket server as the underlying hardware

c. A2-node QEMU + KVM virtual machine
i. 1st vNode mapped to socket 1’'s CPU and Memory
ii. 2nd vNode mapped to socket 2’'s Memory only

2. An software setup with a standardized API for CXL-style memory pooling

a. Auser-space library
b. Akernel backend implemented as a Kernel module

https://github.com/cloudarxiv/emucxl

Virtual Appliance Setup using QEMU

Guest VM
Guest OS / Linux
A
v A
vNode 0 vNode 1
-
DRAM CPUO No CPU DRAM
1 ! 1
: i :
| | c t |
: I :
: . Linux + KVM + QEMU '
I ! |
| | 1 1 |
» ' 2socket machine .
|
v Interconnect
DRAM CPU «— CPU DRAM
NUMA node 0 NUMA node 1

User-Space APls in the EmuCXL library

Standardized API

Description

void emucxl_init ()

void emucxl_exit ()

open CXL device file, store file descriptor, initialized emulated
memory sizing
free all allocated memory and close the device file

void* emucxl_alloc(size_t size, int node)

void emucxl_free (void* address, size_t size)

allocate memory either remotely or locally

node = 0 for local memory, and 1 for remote memory
returns virtual address to calling process

free allocated memory block of the specified size

void* emucxl_resize(void* address, size_t size)

void* emucxl_migrate (void* address, int node)

allocate memory of new size on same node, copy, free earlier
allocation, return address

allocate memory on specified node, migrate all data to new address
and return address

bool emucxl_is_local (void* address)

int emucxl_get_numa_node (void* address)
size_t emucxl_get_size(voidx address)
size_t emucxl_stats(int node)

check if address is mapped from local or remote memory

return the NUMA node associated with the given memory address
return size of memory allocated of the specified memory address
return size of total memory allocated on given NUMA node

bool emucxl_read(void* addr, int, voids buf, size_t) read/write specified number of bytes from/to the memory address
bool emucxl_write(void* buf, int, voidx addr, size_t) and store in/from buffer
void* emucxl_memset (void# addr, int value, size_t) fill a block of memory with either 0 or -1

void* emucxl_memcpy(void#, const voidsx, size_t) copy data from source to destination address

void* emucxl_memmove (void*, const voidx, size_t) move data from source to destination address
unlike memcpy, memmove ensures correct handling of overlapping
memory regions when moving the data.

Kernel Backend

1. Implemented as a Loadable Kernel Module
2. Added IOCTL commands
a. EMUCXL INIT, EMUCXL EXIT, EMUCXL ALLOC, EMUCXL FREE
3. Upon loading the kernel module:
a. Achardevice (/dev/emucx1) is created and registered within the kernel
4. The char device implements open, close, mmap, and ioctl operations in the file operations struct
5. Inthe NUMA-aware mmap operation, memory is allocated using kmalloc node on the NUMA node and is mapped
to a user address space using remap pfn range
6. To avoid swapping the pages out, the PG reserverd bit is set on the mapped pages using SetPageReserved
7. emucxl alloc uses this NUMA-aware mmap, emucxl free uses munmap/ioctl(EMUCXL FREE), and
emucxl init and exit uses open/ioCt(EMUCXL INIT) and close/ioctl(EMUCXL EXIT) respectively

Control Flow of EmuCXL

user space address

. PO 1.
(size, local or remote)

Application or emucxl emucxl
Middleware user library kernel driver
] _emuexint __] _open cXL device |
——— . fa:file descriptor,
emucxl_alloc mmap

(fd)

SetPageReserved

emulated
cxl memory

user space address m
- 3

-
| _ emucx!_exit

‘,ema -

EmuCXL Application Layers

Application Application Application
1 2 3
get,
put, alloc
init, deltﬂEI free I
exit,
alloc,
. free Data Store SIAR dllocator
5 (key value store)
2 [t ¢
=0 }
emucx! user library
T octl I I- mmap, munmap
©
=
—
° emucxl kernel driver

kmalloc, kfree
SetPageReserved

Emulated CXL Hardware

EmuCXL Applications

1. Direct Access

a. Applications that make call directly to the user-space emucxl APls
b. The management of local and remote memory is embedded with the logic of the applications
c. Authors implement a Queue using the EmuCXL library
i. They report numbers for a Queue entirely in the local memory
ii. And another queue entirely in the remote memory
iii. They don’t discuss a local + remote unified queue or any policies to transparently move
elements between them

Execution Enqueue Dequeue
Time (ms) Local Remote Local Remote

Mean 50298 | 567.21 | 417.69 | 500.40
Std. Dev. 9.23 793 8.71 3.66

Reported timings for 15K operations each

EmuCXL Applications

1. Middleware Driven Usage
a. Key Value Store:
i. A Key-Value store uses the EmuCXL library and its API to provide GET, PUT, DELETE
semantics to applications
ii. Access Semantics:

1. GET: First search for a key in local memory and if not found search in remote
memory. If a key is frequently accessed, move it from remote to local memory
using a LRU eviction policy for the local memory

2. PUT: First added to the local memory, if local memory is exhausted, move to
remote memory using LRU

3. DELETE: Search for the key to delete in local first, then search in remote

Thank You !

