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Abstract—With the ever-increasing amount of data
streams generated around the world, efficient processing
and storage of streaming data is more important than
ever. Streaming data is generally in the form of Graphs
and Key-Value pairs representing everything from social
network relationships to metadata. Present day stream
processing engines use B-Tree like structures to ingest
data, which although good for storage is inefficient for
fast inserts, updates or deletes due to poor data locality
and high space overheads. Also, there is no opportunity
of compression in B-Trees. C-Trees or compressed
purely-functional search trees stand as a solution to
this problem by providing snapshot-based immutability
semantics. It also stores data as chunks in its nodes
enabling compression and savings in storage space. Aspen
is a graph processing framework that uses C-Trees at
its core to store graph data and perform batch as well
as stream processing. We aim to utilize the core C-Tree
functionality of Aspen and enable it to store streaming
key-value pairs, in addition to Adjacency Graphs as
key-value pairs form a large segment of all the streaming
data generated around the world.

This paper provides an initial benchmark on how C-
Trees provide performance benefits over B-Trees in terms
of integer-based key-value pair ingestion and deletion and
set the context of being able to use C-Trees to store key-
value pairs with complex value types such as string, binary,
and maps.

Index Terms—stream processing, compressed purely-
functional search trees, aspen, key-value pairs, aspen, ligra

I. INTRODUCTION

As compute and connectivity became cheaper over
the past two decades, there has been an exponential
increase in the amount of data produced around the
world. Most of this data is streaming data in the form
of Graphs and key-value pairs [6]. Graph data mostly
represents relations between different entities while
key-value data represents metadata or even actual
data. This immense growth in streaming data can be
attributed to the increase in the number of Edge and IoT

devices such as smart home appliances, sensors, logging
applications, real-time monitoring systems, and even
mobile applications which continuously emit streams
of data. Such kind of streaming data is important
for performing analytics in real-time, making import
business decisions fast, and even finding out security
vulnerabilities in large-scale systems.

The most common types of operations on streaming
data is inserts, updates, and deletes. When streams
of data reach the stream processing systems, they are
ingested into the system, persisted in an object storage
system such as S3 and GCS [3], and analytics functions
and queries are run on them concurrently. Processing
of streaming data is mostly done in windows using a
sliding-window like technique. The stream processing
engine is usually connected to a Dashboarding system
such as Katana or Graphana where the analysis results
are aggregated and updated in real-time. At the core
of the data ingestion engine of most stream processing
systems is a B-Tree or a B+Tree [4] like structure which
stores the key-value or vertex-vertex pairs (sometimes
ordered by their key or vertex) for logarithmic time
inserts and searches.

The issue with using B-Tree like structures in the
ingestion or storage engine of stream processing systems
is that when data is updated, the nodes of the B-Tree
needs to be mutated. Since, the tree is mutated every
time, operations reaching the tree such as inserts,
updates, and deletes need to be serialized and hence no
parallelism can be incorporated inherently. Additionally,
each node of the B-Tree stores just a single data point
disabling any opportunity for compressing the data
stored.

To fix such issues with B-Trees, Dhulipala et. al.
came up with Compressed Purely-Functional Search
Trees in 2019 [1]. We refer to this tree as C-Tree in the
rest of the paper. C-Tree’s are immutable, which means
when an insert or update operation executes on the tree,
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the targeted nodes create a copy of themselves as the
new version of the node and point to the old version
of itself. Thus a copy-on-write kind of semantics is
followed. Such an approach keeps the tree immutable,
so when multiple operations try to update the same
set of nodes in the tree, they can be done in-parallel
on the different versions and later aggregated. The
outcome of this is parallelism can be used while doing
operations on the tree. Also, C-Trees stores several data
points together in a vector at each node, which allows
doing batch operations on the tree and most importantly
allows compressing the data stored in each node. This
reduces the overall disk or memory usage while storing
the tree.

The Aspen system uses C-Trees to ingest and store
streaming Graphs efficiently. This works fine, but the
problem was that Aspen can only work with Graphs and
not generic key-value pairs which are also a substantial
segment of all the streaming data generated in the world.
The goal of this project was to modify Aspen so that
it can store simple key-value pairs apart from Graphs.
We implement a benchmark for inserting and deleting
[int,int] key-value pairs in Aspen’s implementation of
C-Tree and in a simple B-Tree. Our results show that
writing data to C-Trees are an order of magnitude more
efficient than doing so in B-Trees. The contributions of
the paper are listed as follows:

• A prototype code to check if we can simply store
[int,int] pairs in a C-Tree without using a Graph
interface.

• A performance evaluation to find out the perfor-
mance advantages of doing inserts and deletes in
C-Trees over B-Trees.

• Ongoing work to make Aspen support string/binary
data types as values, so that [int,string] pairs can
also be ingested and compressed in Aspen.

This paper is organized as follows: Section 2 provides
a background on the different concepts and technologies
used in this project, Section 3 discusses the motivating
factors behind this project, Section 4 discusses the all
limitations that past work had, Section 5 gives an in-
depth explanation of our contributions, then in Section
6, we provide an experimental evaluation of our imple-
mentation and discuss our results, and finally in Section
7 and 8, we discuss our future plans for this project and
present our concluding thoughts.

II. BACKGROUND

In this section, we discuss some background informa-
tion on the technologies and concepts related to the work
in this paper.

A. Batch Processing Systems

Batch Processing [13] refers to the practice of process-
ing volumes of data in batches automatically. This is also
referred to as the ”offline processing” of data [9]. While
users are required to submit the jobs, no other interaction
by the user is required to process the batch. Batches may
automatically be run at scheduled times as well as being
run contingent on the availability of computer resources.
Batch processing is an incredibly cost effective way to
process huge amounts of data in a small amount of
time. Because batch processing is largely automated, it
does not require manual intervention. The automation re-
duces operational costs and increases the speed at which
transactions and data can be processed. Bulk database
updates, automatic extract-transform-load (ETL) in data
warehouses, and performing bulk operations on digital
images such as resizing, conversion, and watermarking
are examples of batch processing. Apache Hadoop based
on the Map Reduce paradigm and Apache Spark can
be considered as popular batch processing systems. An
example batch processing application is shown in Figure
1.

Fig. 1. ”Sort and Shuffle” as an example batch processing application
in Map Reduce

B. Stream Processing Systems

Stream Processing refers to the practice of running a
processor on a window of streaming data as soon as they
arrive to continuously generate insights and analytics.
This is also referred to as the ”real-time processing”
of data. Stream processing also sometimes works in the
pub-sub (publisher-subscriber) model where a publisher
continuously publishes data to a stream processing en-
gine, where the data is stored in an object-storage layer,
analyzed, filtered, and processed, and then finally, a
consumer subscribed to a specific topic to read this data
in windows. The sources of data in stream processing
systems are mostly IoT sensors, payment processing
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systems, and server and application logs. Also, some
of the common use cases of stream processing include
real-time fraud and anomaly detection, IoT and edge
analytics, and real-time personalisation, marketing, and
advertising. Figure 2 shows the general architecture
of Stream processing systems. Some popular stream
processing systems in the market include Apache Storm,
Apache Spark Streaming, Apache Kafka, Rising Wave,
and Red Panda [6].

Fig. 2. Stream Processing Systems Architecture

C. Graph Processing Systems

A major portion of all the data produced in the world
is in the form of Graphs. Graph data represented rela-
tionships in social networks, dependencies in a package
manager, routers in a network, etc. These are mostly
property graphs where the vertices have a unique ID
and attached properties to it while edges consist of two
unique IDs representing vertices on each side and an
associated property field. There are several abstractions
for Graph processing, the most popular being the Pregel
abstraction. In the Pregel abstraction, individual ver-
tex programs run in parallel on different vertices and
use message passing to coordinate amongst themselves.
Finally, the program stops when all the vertices vote
to stop. While other Graph Processing Systems follow
what is called the GAS paradigm, Gather-Apply-Scatter.
Streaming Graph processing systems are those systems
that process streaming graphs. They are of two types:
static and dynamic. In static streaming graph processing
systems, only new nodes are added to the graph, while
in dynamic streaming graph processing systems, apart
from new nodes being added, the values in the old graph
nodes are also updated. Some popular Graph processing
systems out there include GraphLab, Apache Giraph,
Google Pregel, and Apache Spark GraphX [11]. An
example Graph processing pipeline is shown in Figure
3.

D. Purely-Functional Search Trees

Generally, a data structure is called a purely-functional
data structure [8] when it can be implemented in

Fig. 3. Example Graph Processing Pipeline

a purely-functional programming language such as
Haskell. Another way to look at it is that purely func-
tional data structures are immutable in nature. By im-
mutable we mean that these data structures when modi-
fied keep an unmodified version of themselves intact and
use pointers to make the new version point to the older
versions. Binary trees when implemented in this way
make purely functional trees. Inherent immutability in
purely functional search trees provide the ability to have
parallelism and thus improved throughput and reduced
latency while doing search tree operations. Apart from
all its benefits, Purely functional search trees have some
downsides such as increased space usage (as it needs to
maintain multiple versions of the same node) and hence
poor data locality.

E. Compressed Purely-Functional Search Trees

A C-Tree (Compressed Purely Functional Tree)
extends the functionality of Purely Functional Trees
with chunking. It is a kind of binary tree with chunking
at every node, following a chunking scheme that allows
storing multiple elements per node contiguously in an
array for better data locality. As discussed in Dhulipala
et al. [1], the chunking scheme in a C-Tree takes an
ordered set of elements to be stored in the tree and
promotes certain elements to become the head node
of the tree. The remaining elements are stored in tails
associated with each node. C-Trees ensure that the same
keys are promoted in different trees by using a hash
function to choose which elements need to be promoted
as head nodes.

C-Trees differ from B-Trees in the fact that B-Trees
are more focused on keeping the height of the tree
minimum so that searchers are faster, whereas in C-Trees
the goal is to store many contiguous segments in a single
node to achieve better compression. Another problem
with B-Trees is that in a purely functional setting,
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copying the nodes in a path (path copying) is necessary
for updates. But in C-Trees, updates can be achieved by
only copying a single node and making it point to the
old node. Also, not updating the original nodes makes
C-Trees immutable in nature that allows multiple parts
of the tree to be worked upon in parallel. This improves
runtime when performing updates in multiple parts of
a C-Tree because these different updates can be done
concurrently. Thus, the main benefit of using C-Trees
over B-Trees is reduced space usage due to unlocked
compressibility and faster batch inserts and deletes. A
Purely-Functional C-Tree structure is shown in Figure
4.

Fig. 4. Structure of a Purely-Functional C-Tree

F. Aspen: Low-Latency Graph Streaming System

Aspen introduced the C-Tree data structure as
described earlier and uses this as the central idea. In
addition to chunking for better data locality, Aspen
assumes that each chunk in the C-Tree stores a sorted
array of integers and uses Difference Encoding within
each chunk for compression. Difference Encoding
can be visualized as: “Given a chunk containing d
integers {I1, I2, ..., Id}, differences can be computed as
{I1, I2 − I1, ..., Id − I1}

Aspen is implemented in C++. It uses a custom
datatype for representing [int, int] inputs and has
custom subroutines for building the C-Tree, inserting
nodes, deleting nodes, and conducting queries on the
C-Tree. The input Adjacency Graph which simulates
an input stream of integer values is used to generate a
treeplus graph as part of graph/api.h.

Additionally, Aspen implements a snapshot function-
ality in immutable_graph_tree_plus.hto
maintain graph immutability between different

update operations. This snapshot subroutine can
use uncompressed (uncompressed_nodes.h,
uncompressed_iter.h, uncompressed_-
lists.h) or compressed (compressed_nodes.h,
compressed_iter.h, compressed_lists.h)
subroutines. These subroutines together help form the
tree plus data structure in tree_plus.h

III. MOTIVATION

The Aspen Streaming Graph Processing framework
was designed to store graphs efficiently using less space
and with better data locality. This enables fast batch
updates, inserts, and deletes. Graph data inputs consist
of [int, int] pairs representing two connected vertices via
a tuple of offsets and edges. This is semantically similar
to simple key-value pairs, although the value in key-
value pairs extends to include string, binary, or any other
complex/nested data type. Data pairs in Graphs and Key-
Value streaming systems are depicted in Figure 5. So,
the idea is to use the benefits of C-Tree’s and Aspen for
simple key-value stream inputs, updates, and deletes, as
from a high level both the inputs are indistinguishable
apart from the data types each workload needs to sup-
port. Many popular key-value stores use a B-Tree or a
B+Tree-like data structure to store their data. The goal is
to check how replacing B-Trees with C-Trees results in
space and runtime improvement in key-value processing.
In the next section, we discuss the limitations of Aspen
that currently prevent it from processing streaming key-
value pairs.

Fig. 5. Streaming Graph Input vs Streaming Key/Value Input

IV. LIMITATIONS OF ASPEN FOR K/V WORKLOADS

The Aspen framework is designed to only ingest
and process graph data containing vertices and edges.
Additionally, Aspen expects its input to be in a particular
“Adjacency Graph” format from the Problem Based
Benchmark Suite [5]. In this format, the inputs start off
as a sequence of offsets, one for each vertex, followed
by a sequence of directed edges, ordered by their source
vertex. The offset for a vertex i refers to the location of
the start of a contiguous block of out edges for vertex i
in the sequence of edges. The block continues until the
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offset of the next vertex, or the end if i is the last vertex.
All vertices and offsets are 0-based and represented in
decimal. This format is shown in Figure 6.

Fig. 6. Adjacency Graph format of Aspen (Ligra)

Such an input format is not practical for storing
real-world key-value pairs, where the values are mostly
strings/binaries or maybe even more complex data types.
Apart from this, the dataset input format is hard-coded in
Aspen to expect‘Adjacency Graph’. Additionally, as the
source code of Aspen is based on Ligra [12], it is hard-
coded to use long/long-long integers only as vertex pairs
(representing edges). So, after browsing the source code,
to be able to make Aspen store and process streaming
key-value pairs (int-string/binary), the input format, the
input processor, C-Tree, C-Tree APIs, and everything
related needs to be refactored. In the next section, we
discuss the details of our implementation.

V. IMPLEMENTATION

We base our implementation on top of Aspen,
the streaming graph processing framework on
top of the Ligra interface. Aspen has multiple
interfaces inside it all nested using C++ templates.
At the core is a ‘tree plus‘ interface defined
in code/graph/tree_plus/tree_plus.h,
which is an implementation of a purely-
functional tree. ‘tree plus‘ has 2 variations:
one with uncompressed nodes and one with
compressed nodes. These abstractions are defined
in code/graph/tree_plus/compressed_-
nodes.h and code/graph/tree_-
plus/uncompressed_nodes.h. Finally, at the top
level, we have a ‘versioned graph‘ interface, which
defines a graph represented using C-Tree. This interface
is defined in code/graph/versioned_graph.h.

Since Aspen already used a C-Tree internally for stor-
ing Graphs, we started by extending the C-Tree interface
for storing key-value pairs. Originally, a C-Tree stores
vertex-vertex pairs representing the edges of a Graph.
We can observe this is code/common/types.h and
code/common/IO.h. So, we started by implementing
new data types for Keys and Values, where Keys are
represented with integers (or) long integers, and Values
are represented with C++ character arrays. The choice
of using integers or long integers for Keys can be done
via a compilation flag -DKEYLONG.

Fig. 7. Modified code/common/types.h

After adding support for Key-Value pairs, we modified
Aspen’s file reading subroutine read_unweighted_-
graph in code/graph/IO.h to accept input files
that do not adhere to the ‘Adjacency Graph’ format. As
per this format:

• The first line in the input file is a string “Adjacency
Graph”.

• The second line is an integer representing the count
for the number of offsets.

• The third line is an integer representing the count
for the number of edges.

• After these 3 lines, all offsets appear in newlines
followed by all edges.

The default tokenizer for this ‘Adjacency Graph’
format splits the input stream into tokens by using
any whitespace as a delimiter. For Key-Value
Pairs, we created a new subroutine read_un-
weighted_kv_graph in code/graph/IO.h
and a new tokenizer pbbs::sequence Lines in
code/pbbslib/strings/string_basics.h.
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Fig. 8. Modified Tokenizer

This can accept Key-Value inputs of type [int,
char*] where the Value can have any alphanumeric
characters or symbols such as:

Fig. 9. ID-Hashtag dataset

Fig. 10. ID-Geo dataset

The aforementioned figures 9 and 10 represent
real-world datasets from a public source [14].

After modifying the file ingestion subroutines, we
started adding subroutines that govern the generation
of the C-Tree using Key-Value inputs. To simplify our
starting effort, we focused on uncompressed graphs and
used subroutines like initialize_treeplus_-
kv_graph and initialize_kv_graph in
graph/api.h. This led to modifying the
template definitions for traversable_-
graph<sym_immutable_graph_tree_plus>
in code/graph/versioned_graph.h,
code/graph/traversible_graph.h, and
code/graph/tree_plus/immutable_graph_-
tree_plus.h. However, due to lack of time, we were
unsuccessful in completing the code porting in these
sections to support key-value based input streams.

Since we were unsuccessful in supporting key-value
inputs end-to-end in Aspen, we devised a proxy bench-
mark that can help measure the effectiveness of C-
Trees over B-Trees for Key-Value inputs. We figure that
vertex-vertex pairs actually mimic a key-value pair where
both the key and value are 64-bit integers. The C-Tree
data structure is implemented in the immutable_-
graph_tree_plus.h class in Aspen. It has a bunch
of APIs to insert, delete, and query the contents of
a C-Tree. The most important of these APIs are the
‘insert edges batch’ and the ‘delete edges batch’ APIs
that are used to insert and delete a batch of edges
(Key/Value pairs) in Aspen. We write a C++ code where
we use the PBBS (Problem Based Benchmark Suite)
library to generate random key-value pairs, insert them
into an empty C-Tree, and then delete them. We do the
inserts and deletes in two ways. One, we insert/delete
the key-value pairs one-at-a-time and second, we do the
same in batches. We measure the time required to insert
and delete 1, 000, 000 key-value pairs to/from a C-Tree
for our performance evaluations.

VI. EVALUATIONS

We evaluate the performance benefit of inserting key-
value pairs in C-Trees by comparing its performance to
B-Trees. For the B-Tree implementation, we create a
simple B-Tree implementation that stores key-value pairs
in its nodes. We use hardware from CloudLab [10], an
NSF-funded bare-metal as a service for our experiments.
We use the machine codenamed ‘m510’ consisting of
8-core Intel Xeon D-1548 at 2.0GHz, 64GB ECC
Memory, and 256GB NVMe SSD from CloudLab.

As described in the previous section, we used ran-
domly generated key-value pairs as our dataset. From our
experiments, we found that the time to insert and delete
key-value pairs in a C-Tree is significantly better than
doing the same in a B-Tree, about an order of magnitude.
Our results are shown in Figure 11.

We believe that the significant performance difference
that we observe is due to the fact that C-Trees do
not create copies on inserts rather they create a new
node and point to the old node. The original tree is
never mutated and hence an approach of immutability is
followed. Using such an immutable data structure, the C-
Tree, inserts, and updates can be done in parallel which
the ‘insert edges batch’ method utilizes. This unlocked
parallelism gives us the performance benefits that we
observe.
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Fig. 11. Performance comparison of insertion and deletion of key-
value pairs in C-Tree versus B-Tree

VII. FUTURE WORK

As future work, our main goal is to complete the code
port for supporting key-value pairs in Aspen where the
value can be any arbitrary data type, starting with a
string/binary data type. For this, we need to complete the
code port in the Versioned Graph interfaces and the Tree
Plus interfaces so that they support string data types as
values. We believe that the best way to achieve this is by
adding adjacent interfaces to the pre-existing ones that
basically support [int, string] pairs. Also, once
these interfaces are implemented and we ensure that it
is working, we need to add compression support for the
C-Tree leaves. We plan to add support for compression
algorithms such as Snappy, ZSTD, and LZ4 [7]. Finally,
we plan to write unit tests for all the functionality we
added and conduct performance benchmarks to evaluate
our implementation.

VIII. CONCLUSION

Data is being produced continuously in today’s world.
Most data producers work round the clock and keep
producing streams of data mostly in the form of Graphs.
Streaming Graph data is important for gaining real-time
insights and taking decisions fast. There are several
stream processing systems out there for storing and
processing data streams such as Apache Storm and
Apache Spark Streaming. These systems work fine for
inserts, but they mostly perform poorly during updates.
This is mainly because, during updates, the original node
in a B-Tree or a B+Tree is updated, and this mutation
is expensive. Also, since the original tree is mutated,
this operation can’t be parallelized. Compressed Purely
Functional Trees (C-Trees) come into the picture as a
replacement for B-Trees to solve this exact problem.
These are a class of immutable search trees, where when

data is inserted or any node is updated, a new node
is created with the new data and made to point to the
old node. This way there’s no need for mutation and
hence multiple of these insert and update operations can
be done in parallel. Therefore, these trees have batch
insert, update, and delete APIs where inserts, updates,
and deletes of individual key-value pairs are done in
parallel. In this work, we aim to expand the scope of C-
Trees from storing only Graphs (vertex pairs representing
edges) to storing simple key-value pairs (pairs of int
and strings) which represent a wider range of streaming
workloads in the real world. We use the batch insert and
delete APIs of the C-Tree interface in Aspen and store
simple key-value pairs in it. For now, we only insert
integer-integer pairs, but we aim to modify the source
code enough so that we can store more complex value
types such as string, binaries, maps, etc. We measure
the performance difference in inserting and deleting key-
value pairs from both a C-Tree and a B-Tree and found
that insertion and deletion operations are about an order
of magnitude faster in C-Trees than in B-Trees. We
attribute this performance gain to the parallelism that
C-Trees provide due to their immutability.
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