
Yosemite: Towards Designing a File Format for Long-Term Archival Storage of
Structured Datasets

Jayjeet Chakraborty
University of California, Santa Cruz

Santa Cruz, CA, USA
jayjeetc@ucsc.edu

Abstract

Living in the 21st century, we humans collect a huge
amount of data from different data sources on a regular
basis. It is important to store some of that data reliably
for extended periods of time so that our future genera-
tions can have access to the knowledge developed by the
previous generations and can build on top of that. Much
of the data generated or captured are structured, meaning
they adhere to a specific schema or a set of rules. Al-
though traditionally, people stored structured data in re-
lational database management systems (RDBMS), with
the advent of big data storage technologies such as data
lakes and lakehouses, several structured data file formats
have been developed to store data cheaply in the cloud.
Most of these big data file formats were designed with
storage and data access efficiency in mind and not par-
ticularly for archival storage. In this paper, we study the
existing structured data file formats and analyze them
based on their ability to store data for long periods of
time. We then propose some features that we feel are
essential for an archival storage format to have. Finally,
we propose the layout and design of a new archival
structured data storage format, Yosemite, based on our
analysis.

1 Introduction

In today’s world, data is being generated at an enormous
rate. About 97 Zettabytes of data was generated in 2022
alone, and the number is expected to grow at a rate of
about 23% annually [1]. Even though a small fraction
of this data might be essential enough to archive, the
absolute numbers are still pretty high. Storing data reli-
ably for the long term is essential to preserve the world’s

knowledge and findings of the previous generations for
future generations to build upon. Rapid innovations in
technology result in paradigm shifts every few decades;
hence it is essential to ensure that future generations
have the means to interpret generations-old archival data
assuming technology obsolescence is the norm. This can
be ensured by carefully designing solutions with the fu-
ture in mind while building solutions to archive data [12].
Data comes in different forms, such as binary, text, im-
age, audio, video, and structured tables, and hence it is
necessary to ensure that the format in which different
forms of data are archived is future-proof: robust, reli-
able, secure, efficient, backward compatible, and with
minimum dependence on other technologies. Out of all
the data produced in today’s world, about one-fifth of
it is structured data. Structured means that the data fol-
lows a certain schema and organization. Sources such as
IoT sensors, analytics services, financial and commer-
cial sectors, and several scientific experiments generate
structured data. Such kind of data is often stored using
specialized file formats as preserving the structure, se-
mantics, and relations between the different fields of the
data is of utmost importance while storing such data.
One of the main purposes of storing structured data
for long periods of time is to be able to perform his-
torical analysis on old data and basically compare the
current and previous state of the world. Several different
file formats have been proposed over the years, such as
CSV [19], JSON [20], ORC [7], Parquet [2], HDF5 [6],
and NetCDF [5]. All these different file formats were
designed for certain use cases and sometimes specific
data management engines and hence differ in their inter-
nal representation format, orientation, encodings, human
readability, compression levels, access speed, and stor-

1



age efficiency. Although none of these file formats were
designed with the goal of preserving structured data for
long periods of time, many of them have certain spe-
cific features and design choices that can be useful for
archival data storage. The contributions of this paper are
as follows:

• We introduce several popular file formats used for
storing structured data and provide a detailed back-
ground on each one of them.

• We analyze the different file formats introduced
based on their ability to store archival data reliably
for extended periods of time.

• We propose several features that a structured data
file format should possess in order to be capable of
being used for archiving.

• Based on our feature recommendations, we pro-
pose the design of a new archival structured data
file format, Yosemite, inspired by the designs of
existing file formats but optimized for long-term
data storage rather than read/write performance.

This paper is organized as follows: In Section 2, we
provide a detailed background on some of the different
file formats currently available for storing structured
data. Then in Section 3, we do a deep dive into the
file formats described in Section 2 and analyze them in
terms of their ability to store archival data reliably for ex-
tended periods of time. In Section 4, we propose several
features that archival file formats should possess based
on our learning from Section 3. Finally, in Section 5, we
propose the design of a new archival structured data file
format and explain our design choices.

2 Background on Different File Formats

File formats for storing structured data occur in broadly
two categories: Text-based and Binary. Examples of text-
based file formats include CSV, JSON, and XML, while
binary file formats include ORC, Parquet, and HDF5.
Text-based file formats store data as human-readable
plain-text strings using ASCII encoding coupled with a
combination of delimiters and parenthesis to preserve
semantic information. Binary file formats, on the other
hand, store data as bytes using UTF-8 encoding. Text-
based file formats are generally preferred when human

readability is required, while binary file formats are pre-
ferred when storage efficiency is important. Since struc-
tured datasets commonly consist of more numeric fields
than text fields, storing them in binary format instead of
text format is a better choice.

2.1 CSV

CSV or Comma Separated Values format is a simple text-
based format for storing 2-dimensional data. CSV uses
comma (,) to separate data in different fields. The first
row in a CSV file is generally a comma-separated list of
fields, and the subsequent fields are comma-separated
values. Although CSV files mostly use a comma as a de-
limiter, they sometimes also use characters like spaces,
tabs, pipes (|), or semicolons (;) as delimiters. Most CSV
readers and writers allow clients to use their choice of
delimiter. CSV files are readable by spreadsheet pro-
grams such as Microsoft Excel or Google Sheets and
are used to exchange tabular data between databases
and spreadsheets. The simplicity of CSV files being just
a bunch of ASCII characters makes it a reliable and
future-proof format for storing critical information. On
the other hand, being text-based, CSV falls behind in its
storage and access efficiency.

2.2 JSON

JSON (JavaScript Object Notation) is another text-based
file format commonly used in web applications for rep-
resenting API requests and responses. JSON’s structure
is a little more complex than just comma separations
of CSVs, as JSON supports storing nested fields and
complex data types such as arrays. Unlike CSV, JSON
has a notion of data types and supports all the data types
that JavaScript supports, explaining its preference in the
web ecosystem. JSON format is a little more inflated
than CSV, as it uses a combination of different brackets
and parentheses to represent hierarchical relationships
in the data. JSON is more human-readable than CSV
due to its ability to represent complex and hierarchical
data in a concise manner and hence is preferred where
user experience is crucial. Similar to CSV, JSON has
widespread usage and is supported by most databases
and data management tools.

2



2.3 ORC

ORC, or Optimized Row Columnar format is a colum-
nar file format, that was designed to be an efficient for-
mat for storing Hive tables. ORC is the successor to
the Record Columnar (RCFile) format, which was de-
veloped in collaboration with Facebook. In ORC files,
data is organized as row groups called stripes, and meta-
data is stored in the file footer. In ORC, each stripe is
250MB by default. The default stripe size was chosen
to best match the default HDFS [18] block size, which
is 256MB. ORC’s popularity slowly declined and is
getting replaced with Parquet since it was primarily de-
signed for the Hive and Pig ecosystems while the world
moved towards using the Hadoop ecosystem for big data
processing.

2.4 Parquet

Apache Parquet is a binary open-source columnar file
format for efficient storage and retrieval of columnar
data initially designed for the tools within the Hadoop
ecosystem. Parquet is quite similar to ORC as it also
organizes data in terms of row groups. It supports nested
data structures, major data types, and several encoding
schemes, such as dictionary encoding, run-length encod-
ing, bit-packed encoding, and delta encoding. Parquet
also comes with several choices for column compres-
sion, which include GZIP, Snappy, LZ4, and ZSTD. One
of the main features of Parquet is that it stores file, row
group, and column level metadata in the form of ta-
ble schema and row group and column chunk statistics
such as Min/Max values. The presence of such statistics-
based metadata in Parquet files allows readers to read
out only the data chunks that are required by a particu-
lar query resulting in reduced I/O and overall reduced
data movement. Over the years, Parquet has grown to
become the file format of choice for almost any data
processing system, with most of them being outside the
Hadoop ecosystem. The proliferation of Parquet users
has resulted in the development of a bunch of Parquet
access libraries and SDKs for different programming
languages and data processing frameworks.

2.5 HDF5

HDF5 is an open-source binary file format that supports
storing large, complex, and heterogeneous datasets for
scientific data analysis created at the National Center

for Super-Computing Applications (NCSA). HDF5 uses
a "file directory" structure as in Linux/Unix, which en-
ables data stored in HDF5 to be accessed in a POSIX-
like manner. HDF5 format consists of low-level data
objects such as a super-block, B-tree nodes, object head-
ers, collections, local heaps, and free spaces. It uses
these low-level objects to form two main high-level
objects: groups and datasets. Datasets are typed multi-
dimensional elements, and Groups are container struc-
tures that hold datasets and other groups. These high-
level objects are then exposed to the users using the user-
facing access APIs. In HDF5, metadata is stored in the
form of user-defined named attributes attached to groups
and datasets. HDF5 format has high read speeds as it was
designed for fast access to large sets of atmospheric and
time-series data. HDF5 has data access libraries in all
major programming languages and a mature developer
ecosystem.

2.6 NetCDF

The Network Common Data Form (NetCDF) file for-
mat is an open-source binary scientific data storage
format that was developed at the University Corpo-
ration for Atmospheric Research (UCAR) for array-
oriented atmospheric data storage. It was derived from
the HDF5 file format with some restrictions. NetCDF is
self-describing, portable, scalable, appendable, sharable,
and archivable. NetCDF is based on the Java common
data model, which has a data access layer to handle data
reading, a coordinate system layer to identify the coor-
dinates of the data arrays and a scientific data type layer
that identifies specific types of data such as grids, im-
ages, and point data. NetCDF has officially maintained
API interfaces in Java, Fortran, C, and C++. There exists
a parallel version of NetCDF called parallel-NetCDF
that was developed by Argonne National Laboratory
and Northwestern University using MPI-I/O, which is a
parallel I/O library.

3 Analysis of Existing File Formats

In Section 2, we looked at several different structured
data file formats that are used widely today. In this sec-
tion, we aim to analyze these formats in terms of their
ability to become a reliable archival data format.

First, we looked at text-based file formats such as
JSON and CSV. These file formats are easy to read and

3



write and are widely accepted due to their simplicity.
Also, their specifications are pretty simple and have re-
mained unchanged for decades and are likely to stay
like that. The simplicity and stability are a plus for any
archival storage format. The main downside of these
text-based file formats is that they use a lot more space
than binary file formats due to their ASCII encoding of
every character they store. In archival storage, maximiz-
ing storage density is of utmost importance; hence text-
based file formats fall behind by a huge margin when
considered for archival storage. In terms of metadata
storage, text-based formats ideally can store metadata in
text format, but for some reason, they don’t store any.

Then, we looked at some binary file formats such as
ORC, Parquet, HDF5, and NetCDF. Parquet and ORC
were mostly created for use in data management and pro-
cessing tools across the Hadoop [11] ecosystem, while
HDF5 and NetCDF were developed for use in Scientific
analysis to store time-series data, such as in atmospheric
monitoring. The main benefit of binary file formats like
these is that they are quite space efficient. Structured data
being mostly consisting of integers and doubles, binary
file formats can store them using the lowest possible
number of bits using something like UTF-8 encoding,
unlike text-based formats where every character needs
to be encoded in ASCII. Since binary file formats mostly
store columnar data, they unlock the capability to ap-
ply compression and encoding to the columns for better
storage efficiency. Some might argue that more com-
pression means data needs to be decompressed before
processing, but lately, researchers have come up with
algorithms that can execute compute operations directly
on compressed and encoded data [9]. Additionally, these
file formats have their specifications and format layouts
open-sourced and easily available, which is an essential
requirement for archival storage formats as it guarantees
a long lifetime and high stability. Another benefit of
binary file formats is that they store a wide variety of
metadata in their headers and footers, that make these file
formats self-describing and provide several optimization
opportunities to the clients.

Both these text-based and binary file formats also have
a wide variety of open-source data access libraries and
frameworks available that are maintained by the commu-
nity, hence making it easy for users/clients to integrate
support for these file formats into their applications.

Some areas in which all of these file formats are lack-
ing are data integrity and security. Data integrity is quite

important for file formats if they are required to store
data for long periods of time. This is because, with time,
due to several natural factors, the underlying bits of-
ten get corrupted or flipped, and it is important to catch
these errors early. Security is also essential as archival
data often consists of critical information such as pass-
words, card numbers, and social security numbers. To
protect such information from malicious agents, pass-
word protection or encryption support in structured data
file formats is critical.

4 Features of an Archival File Format

In this section, we propose some features that we believe
are essential for a structured data file format to be able
to store archival data for long periods of time. There can
always be more ways we can make a strong archival file
format, but these are some of the most essential ones,
according to us.

4.1 Open-Source and Well-Documented

It is quite important that the file format implementation
is not controlled by a closed-source technology com-
pany. Although the file format technology might be very
robust and well-maintained, it might be the case that
a particular company that developed and maintained
the file format primarily for its business needs stopped
maintaining the project due to organizational changes.
In such an occurrence, people outside the organization
using that file format to archive their data would be ad-
versely affected as all their archived data would become
inaccessible due to the access libraries and format speci-
fications becoming obsolete and difficult to find. Hence,
it is important that we use file formats that are open-
source, with the format specifications well-documented.
So, even after several years, when the file format is not
widely used anymore, people using it to archive their
data will be able to easily find the source code of the
access libraries or maybe even write an access library
using the specifications, to be able to read back their
files. In this way, using open-source file formats gives
users more control over the lifetime of the file format
and over their archived data in return [4].

4



4.2 Space Efficient

Using storage space efficiently is one of the most impor-
tant considerations when thinking of archival storage.
Organizations want to spend the least amount of money
for storing archival data because such data does not drive
their business decisions anymore. That’s why the goal
is to be able to pack as much data as possible within
a small storage space so that the "$/gigabyte" cost for
storing data is minimal. When looking at text-based and
binary file formats, binary file formats are the most space
efficient as they do not need to ASCII encode everything
like text-based formats.

In terms of storing different data types efficiently, it
is important that the file format supports variable-sized
data types and does not have only fixed-sized data types.
This means the data type should not use more bytes
than absolutely necessary for storing the particular value.
For example, popular file formats usually have support
for 8, 16, 32, and 64 bit versions for integer and dou-
ble data types and variable-sized strings using offset
vectors. Another important factor to consider for space
efficiency is to have a columnar file format that enables
better compression and encoding of data, but compres-
sion/encoding deserves a section of its own, so we dis-
cuss it separately.

4.3 Highly Compressed and Encoded

As we discussed in Section 4.2, storage space efficiency
being critical for archival storage, compression, and
encoding techniques, becomes an important factor for
archival file formats. Since we are not concerned about
read and write speeds while dealing with archival data,
we should focus on the compression algorithm that has
the highest compression ratio and is lossless. The most
widely used lossless compression algorithms in mod-
ern columnar file formats for column-level compres-
sion are Snappy, LZ4, and ZSTD [10]. Out of these 3,
ZSTD trades off speed for its best compression ratio.
On the other hand, Snappy is faster but provides only
lightweight compression. LZ4 might be the compres-
sion algorithm of choice if a decent balance of both
read/write speed and compression ratio is required; oth-
erwise ZSTD seems to be the best choice. Once again,
tying back to Section 4.1, we would like to reiterate that
only widely-used standard compression algorithms with
open-source implementations and specifications should

be leveraged. In terms of encoding techniques, we can
use Run-Length encoding, Dictionary Encoding, and
Bit-Packed Encoding as these encoding algorithms inte-
grate nicely with the compression algorithms mentioned
above [16].

4.4 Ensure Data Integrity

An archival file format should provide ways to check
the integrity of the data stored in it. Integrity checking is
important because, depending on the media the file was
stored in, it might be the case that the underlying bytes
experience some form of bit rot or corruption. External
agents such as heat, acoustic waves, magnetic interfer-
ence, air resistance, or simply mechanical wear and tear
can be the cause of data corruption [17].

To deal with such issues, it is often the case that
when data is written to a file for archiving, it is
checksummed, and the hash is also archived for future
integrity-checking purposes. Some widely used algo-
rithms used for checksumming are MD5, CRC-32, SHA-
1, SHA-256, and SHA-512. MD5 is the fastest and gen-
erates a 128-bit checksum. On the other hand, SHA-256
and SHA-512 generate the most secure hashes but are
slow. SHA-1 generates a 160-bit hash and provides a
good balance of security and speed [?]. Additionally,
Error-correcting codes (ECCs), such as Repetition codes
and Hamming codes which use parity bits to detect er-
rors in bit strings, can also be used [15].

4.5 Secure

Some categories of archival data should be stored se-
curely, away from the reach of malicious agents. Ex-
amples of such kinds of data include classified govern-
ment information, financial institution’s statistics, health
records of individuals, etc. At the file level, password
protection and encryption are the most common ways of
dealing with security. For example, when we password-
protect a PDF file, the contents of the PDF are encrypted
using a 256-bit AES encryption. Asymmetric encryp-
tion techniques such as Public/Private key encryption
can also be a viable option [23]. In this case, writers of
the archival files would encrypt the file contents with a
public key, and the readers are required to have access
to a private key in order to decrypt the files.

A major issue while considering encryption of
archival data is that there needs to be a way to securely

5



archive the passwords and the private keys also. We
leave this as future work as this is out of the scope of
our current research.

4.6 Self-Describing and Metadata Rich

Information that describes data is known as metadata.
When archiving valuable data for extended periods of
time, it is essential that the data is accompanied by in-
formation that helps the future readers of the dataset
get an idea of the data stored without actually reading
all of it out. Structured data file formats should have a
dedicated metadata section at the file header or footer so
that access libraries can read out the metadata fast with-
out requiring to perform a bunch of random accesses
as metadata access often sits on the critical path during
dataset discovery [22].

For example, metadata might consist of dataset de-
scribing information such as row count, column count,
schema, data types of fields, null counts of columns,
in-memory size of the data, compression, and encod-
ing information, sort orders, endianness, range of nu-
meric columns, and, primary key. For access efficiency,
although not necessary for archival file formats, it might
contain Min/Max statistics for rows groups, and column
chunks. Finally, files should also have some informa-
tion describing the origin of the data, basically details
about when, where, and by whom the particular file was
created. Finally, the file format should store its version
along with the version of the access library that was used
to create a file.

4.7 Block-Aligned Data Boundaries

Organizations storing a bunch of archived datasets might
occasionally want to run some form of compute opera-
tion or analysis on them. If the amount of data archived
is huge, for example, in the order of petabytes, it might
not be economical to read out all of the data to client
machines for analysis. In such a case, running compute
operations directly inside the storage nodes is a good
alternative as it does not require moving the data [8].
Since present storage devices mostly allow access at
block granularity, it is important to ensure that disk
blocks contain self-contained data so that compute oper-
ations can process blocks independently. To have self-
contained blocks, file formats should follow block align-
ment as much as possible. For example, file formats

could store row groups or column chunks in sizes of a
device block [13]. Block alignment of data inside files
has the added advantage of reduced device interference
during concurrent accesses to a single file and, in turn,
reduced device wear and tear, ultimately increasing the
device’s lifetime.

5 Yosemite: An Archival Structured Data File
Format

In this section, we present the layout and design of our
new archival structured data file format, Yosemite.

5.1 Format Layout

Metadata

Data Offset

Footer Offset

File Header

Column Hashes

File Body

Column 
Chunk 1

Column 
Chunk 2

Column 
Chunk 3

Column 
Chunk 1

Column 
Chunk 2

Column 
Chunk 3

File Footer

Row Group 0

Row Group 1

Figure 1: Layout of Yosemite

The layout of our file format is organized into three
parts. First comes the file header, then the file body, and
then the file footer. In the file header, we store the file
body offset, the file footer offset, and then the header
information. The file body contains the tabular data in
row groups, where every row group is of the same size.
Row groups contain column chunks, each chunk repre-

6



senting the part of the column for that row group. Lastly,
we have the file footer, which entirely consists of the
footer information. The layout of Yosemite is shown in
Figure 1.

5.2 Description

Based on our observations and speculations from Sec-
tion 3 and 4, we propose a new file format, Yosemite,
designed to store structured tabular data reliably for ex-
tended periods of time.

Since we want our file format to have a long lifetime,
we plan it to be an open-source file format from the
beginning. We also plan to have the format specification
and design documents publicly available in the form of
RFCs and GitHub Wikis. Additionally, we would like
to have a community grow around our file format, with
people trying to use it for archiving their data and provid-
ing feedback. We also hope that developers specializing
in different programming languages would contribute
access libraries for Yosemite and help in expanding its
user base.

Archival storage being our major goal, we want a
binary file format since binary file formats use less space
to store data as compared to text-based formats. We
plan on using serialization protocols such as Google
Protocol Buffers (commonly known as Protobuf) [14] or
Apache Thrift [3] to serialize tabular data into raw bytes.
Protobuf is what we would prefer to use since it has a
bigger community, support for more data types, better
extensibility, and more resources and documentation to
refer to.

In terms of the underlying data layout, we base our
file formats design to be a columnar file format as colum-
nar file formats can be easily encoded and compressed,
allowing to optimize for space which is important for
archival storage. Columnar file formats are also more
efficient in terms of their read speeds in OLAP (On-
line Analytical Processing) workloads accessing only
a few columns, as columnar file formats result in few
sequential accesses rather than a bunch of random ac-
cesses [21].

For compression and encoding, we would have sup-
port for dictionary encoding, run length encoding, and
bit-packed encoding, depending on the field types. For
example, fields with repeated values will benefit from
run-length encoding (RLE), and fields with a well-
defined set of values will benefit from dictionary en-

coding. After encoding, we would like to compress our
columns using ZSTD for maximum space savings.

Our file format should also ensure data integrity,
which means readers should be able to tell if there is
data corruption present in the file. We plan on imple-
menting this by calculating SHA-256 hashes of every
column and storing them in the file header. We would
also calculate and store the SHA-256 hash of the file
metadata, as metadata is equally important as the data
and is often the entry point while reading a file. We leave
implementing Error-correcting Codes (ECCs) as future
work.

In terms of ensuring data access security, we plan on
having RSA-based public/private key encryption sup-
port in our file format. After writing out the file, the
writers would encrypt the file using a public key. Ev-
ery organization will have its own unique public key.
While reading the file, the clients need to have access to
a private key to be able to decrypt the file contents.

We would like to have the data stored in our file for-
mat to be self-describing, and there’s only one way to
make data self-describing: accompany with enough use-
ful metadata. We plan on storing all the metadata fields
as discussed in Section 4.6. We also plan to reserve space
for a limited amount of user-specified metadata that
can be filled in by the file writers based on application-
specific use cases. All the metadata would go into the
file footer, with the footer offset being stored in the file
header.

Finally, to be able to implement in-storage process-
ing of our files, we need to ensure one-to-one mapping
between logical data boundaries and block/page size of
underlying media. We plan to use row groups as logical
boundaries in our file format and allow file writers to
use a user-specified byte size for row groups based on
the block/page size of the underlying media where the
file will be stored. We understand that it is not always
possible to write rows to precisely fit a row group chunk;
hence our file writers use padding whenever necessary.

6 Future Work

For future work, we plan on exploring more on the secu-
rity and encryption front of different file formats. Also,
techniques for reliably archiving passwords and private
keys are an open area for research for us. Finally, we
would like to implement the design of our proposed file

7



format by releasing an official specification document
and by building and maintaining open-source access
libraries.

7 Conclusion

In this paper, we look at structured data file formats from
an archival storage point of view. We study several struc-
tured data file formats, both text-based and binary, such
as CSV, JSON, Parquet, ORC, HDF5, and NetCDF, and
analyze them in terms of their ability to store archival
data reliably for long periods of time. We identify sev-
eral features from these file formats, which we believe
are essential for an archival structured data file format
to have. Along with the features identified, we add some
more features that don’t currently exist, such as password
protection and checksumming, and present an exhaus-
tive list of archival-first file format features. Based on
our feature recommendations, we propose the design of
Yosemite, a new structured data file format for storing
archival data. We feel that we have only explored a frac-
tion of what is required for a file format to store archival
data reliably; hence a lot of research is still remaining,
which we aim to do as future work.

8 Acknowledgement

I would like to extend my gratitude to Professor Ethan L.
Miller for offering the awesome "CSE290S: Preserving
digital information for future generations" class. Addi-
tionally, I would like to thank my classmates for their
valuable perspectives in the class and for helping me
make the most out of this class.

References

[1] Amount of data created daily (2023). https://
explodingtopics.com/blog/data-generated-per-day.

[2] Apache parquet. https://parquet.apache.org/.

[3] Apache thrift. https://thrift.apache.org.

[4] File formats and standards. https://www.dpconline.
org/handbook/technical-solutions-and-tools/
file-formats-and-standards.

[5] Netcdf. https://www.unidata.ucar.edu/software/
netcdf/.

[6] The hdf5® library file format. https://www.hdfgroup.
org/solutions/hdf5/.

[7] Apache orc: High-performance columnar storage for hadoop,
2018.

[8] ADAMS, I. F., AGRAWAL, N., AND MESNIER, M. P. Enabling
near-data processing in distributed object storage systems. In
Proceedings of the 13th ACM Workshop on Hot Topics in
Storage and File Systems (2021), pp. 28–34.

[9] AGARWAL, R., KHANDELWAL, A., AND STOICA, I. Succinct:
Enabling queries on compressed data. In 12th {USENIX}
Symposium on Networked Systems Design and Implementation
({NSDI} 15) (2015), pp. 337–350.

[10] AHER, R. N., AND PANDE, M. Analysis of lossless data
compression algorithm in columnar data warehouse. In 2022
6th International Conference On Computing, Communication,
Control And Automation (ICCUBEA (2022), IEEE, pp. 1–4.

[11] APACHE SOFTWARE FOUNDATION. Hadoop.

[12] BAKER, M., KEETON, K., AND MARTIN, S. Why traditional
storage systems don’t help us save stuff forever. In Proceedings
of the First Conference on Hot Topics in System Dependability
(USA, 2005), HotDep’05, USENIX Association, p. 7.

[13] CHAKRABORTY, J., JIMENEZ, I., RODRIGUEZ, S. A., UTA,
A., LEFEVRE, J., AND MALTZAHN, C. Skyhook: Towards
an arrow-native storage system. In 2022 22nd IEEE Interna-
tional Symposium on Cluster, Cloud and Internet Computing
(CCGrid) (2022), IEEE, pp. 81–88.

[14] CURRIER, C. Protocol buffers. In Mobile Forensics–The File
Format Handbook: Common File Formats and File Systems
Used in Mobile Devices. Springer, 2022, pp. 223–260.

[15] HAMMING, R. W. Error detecting and error correcting codes.
The Bell system technical journal 29, 2 (1950), 147–160.

[16] HESABI, Z. R., TARI, Z., GOSCINSKI, A., FAHAD, A.,
KHALIL, I., AND QUEIROZ, C. Data summarization tech-
niques for big data—a survey. Handbook on Data Centers
(2015), 1109–1152.

[17] LAUBER, J. Bit rot and silent data corruption in digital audio-
visual preservation.

[18] SHVACHKO, K., KUANG, H., RADIA, S., AND CHANSLER,
R. The hadoop distributed file system. In 2010 IEEE 26th
symposium on mass storage systems and technologies (MSST)
(2010), Ieee, pp. 1–10.

[19] WIKIPEDIA CONTRIBUTORS. Comma-separated values —
Wikipedia, the free encyclopedia, 2023. [Online; accessed
14-June-2023].

[20] WIKIPEDIA CONTRIBUTORS. Json — Wikipedia, the free
encyclopedia, 2023. [Online; accessed 14-June-2023].

[21] ZENG, X., HUI, Y., SHEN, J., PAVLO, A., MCKINNEY, W.,
AND ZHANG, H. An empirical evaluation of columnar storage
formats. arXiv preprint arXiv:2304.05028 (2023).

[22] ZHANG, W., BYNA, S., TANG, H., WILLIAMS, B., AND

CHEN, Y. Miqs: Metadata indexing and querying service
for self-describing file formats. In Proceedings of the Interna-
tional Conference for High Performance Computing, Network-
ing, Storage and Analysis (2019), pp. 1–24.

[23] ZHANG, Y., XU, C., CHENG, N., AND SHEN, X. Secure
password-protected encryption key for deduplicated cloud stor-
age systems. IEEE Transactions on Dependable and Secure
Computing 19, 4 (2021), 2789–2806.

8

https://explodingtopics.com/blog/data-generated-per-day
https://explodingtopics.com/blog/data-generated-per-day
https://parquet.apache.org/
https://thrift.apache.org
https://www.dpconline.org/handbook/technical-solutions-and-tools/file-formats-and-standards
https://www.dpconline.org/handbook/technical-solutions-and-tools/file-formats-and-standards
https://www.dpconline.org/handbook/technical-solutions-and-tools/file-formats-and-standards
https://www.unidata.ucar.edu/software/netcdf/
https://www.unidata.ucar.edu/software/netcdf/
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/

	Introduction
	Background on Different File Formats
	CSV
	JSON
	ORC
	Parquet
	HDF5
	NetCDF

	Analysis of Existing File Formats
	Features of an Archival File Format
	Open-Source and Well-Documented
	Space Efficient
	Highly Compressed and Encoded
	Ensure Data Integrity
	Secure
	Self-Describing and Metadata Rich
	Block-Aligned Data Boundaries

	Yosemite: An Archival Structured Data File Format
	Format Layout
	Description

	Future Work
	Conclusion
	Acknowledgement

