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Abstract

Computational Storage allows offloading compute operations from clients to storage
servers to be able to mitigate performance implications due to client-side CPU bottleneck
and reduced scalability. Since the compute capability of the client is distributed across the
storage tier in computational storage, we might be able to use cheap low-power CPUs on
the storage servers, to be able to retrieve equivalent performance as client-side computation
while enjoying the benefits of compute offloading such as reduced network bandwidth. In
this paper, we aim to find out how much resource savings in terms of CPU and Network
can one achieve by adopting computational storage.

1 Introduction

In the past decade, I/O hardware like the Disks and the Network interconnects have become
faster than ever. With the introduction of protocols such as NVMe, SSDs can now sustain
a throughput of 2-3 GB/s. Also, with innovations in networking hardware and RDMA tech-
nologies like Infiniband and RoCE becoming mainstream, it is common to find link speeds of
25-100 Gbps in modern data centers. But, with Moore’s law coming to an end, CPU pro-
cessing capabilities have failed to keep up with the fast I/O devices, causing the performance
bottleneck to shift from the I/O devices to the CPU. The notion of ”a fast CPU and slow disk”
is rendered invalid in today’s high-performance systems as shown by Trivedi et. al. [TSP+18].
One solution to this problem is to move the processing from the client to the storage layer
so that the single client CPU is no more the bottleneck. Offloading compute to the storage
layer gets the computation access to the storage layer CPUs in a scalable manner enabling the
system to benefit from the high-performance I/O devices. Another benefit of using compu-
tational storage is that it reduces unnecessary data movement from the storage to the client
resulting in network bandwidth savings, reduced latency, and high throughput. Since the
computation is taken from the client and distributed amongst the storage layer, every storage
server does a fraction of the total work and does not utilize all of its CPU cycles. Also, when
only the result of a computation is sent back to the client from the storage layer, only a frac-
tion of the network bandwidth is used. In this paper, we aim to quantify the resource savings
in terms of CPU and network bandwidth that one can expect to get by using computational
storage. We aim to find out if adopting computational storage can help lower infrastructure
costs by enabling the use of cheaper CPUs and interconnects while preserving competitive
performance. We use Skyhook [CJR+22], as our candidate computational storage system for
performing this study. It is described in detail in Section 2. Overall, the paper is organized as
follows: Section 2 goes over the background information that is required to understand this
paper, Section 3 describes the experiments in detail along with the observations, and finally,
Section 4 discusses future work and concluding thoughts.
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2 Background

This section discusses in detail the different systems and technologies that we use to perform
our experiments.

2.1 Apache Arrow

Apache Arrow [Tea18] is an in-memory columnar format optimized for efficient analytics op-
erations on modern hardware. It describes a standard data format for exchanging structured
data between different systems without serialization or deserialization. The Arrow format
allows compute engines and query execution engines to maximize their efficiency when scan-
ning and iterating large chunks of data. The contiguous columnar layout of Arrow enables
vectorization using the latest SIMD operations on modern hardware. Besides being an in-
memory format, it is also a collection of different data processing components that allow
building parts of a data processing system. Some of the most-used components are Flight,
a gRPC-based data transfer protocol [fli19]; Feather, A Arrow-based columnar persistent
storage format [Wic]; Gandiva, An LLVM-based expression compiler [gan18]; Dataset API,
An abstraction for realizing datasets over a directory of files [Arr]. Arrow is also language-
independent as it has APIs in several different programming languages such as C++, Java,
Python, Rust, R, JavaScript, and Julia. Several popular data processing systems such as
Spark, Dask [Roc15], Ray [MNW+18], Pandas, Parquet [par] have added support for Arrow
data and Arrow data sources.

2.2 Ceph

Figure 1: Architecture of Ceph.

Ceph [WBM+06] is a petabyte-scale distributed and programmable object storage system
providing 3-in-1 interfaces for object, file, and block-level storage. Ceph was developed as
a part of a Ph.D. thesis at UC Santa Cruz and was first published in 2006. Ceph does not
use any other filesystems internally; rather, it manages the HDDs and SSDs directly with its
custom storage backend, BlueStore, part of its RADOS [WLBM07] object-store. Ceph was
developed for commodity hardware, and hence it can replicate data across a cluster, employing
several techniques such as erasure coding, replication, and snapshots. Ceph is unique as it
does not have a single point of failure. This is because of the CRUSH [WBMM06] map feature
that Ceph provides. CRUSH maps contain object-OSD mappings, which the Ceph client uses
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to calculate the location of an object in a Ceph cluster. After figuring out the location of an
object, the client directly connects to a Ceph OSD and reads the object. Ceph also provides
a plugin-based object-store extension mechanism through its Object Class SDK [obj]. This
SDK allows writing embeddable plugins (in the form of shared libraries) in C++ and Lua
containing logic to access and modify objects inside the storage servers within the RADOS
I/O path. The SDK provides a subset of POSIX-like system calls such as cls cxx read ,
cls cxx write , and cls cxx stat to be able to read, write, and stat objects respectively.
This SDK is heavily used by several Ceph components such as Ceph RBD (Rados Block
Device) and CephFS (the Ceph filesystem). The architecture of Ceph is given in Figure 1.

2.3 Skyhook
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Figure 2: Architecture of Skyhook.

Skyhook [CJR+22] is a programmable storage system built on top of Ceph that can offload
query executions from the client to the storage layer. Skyhook supports scanning datasets
containing files of different formats such as Parquet, Feather, CSV, JSON, or any other format
as long as they are supported by Apache Arrow. Skyhook is built as a storage-side plugin
for Ceph, which, when embedded inside Ceph OSDs in the form of shared libraries, allows
executing queries within the Ceph storage servers. Skyhook is exposed to the clients using
a Arrow FileFormat API extension called the SkyhookFileFormat API. This API, when

used with the Arrow Dataset API, allows offloading dataset scans instantly. Internally,
SkyhookFileFormat leverages Ceph filesystem metadata containing file striping information
to map files in CephFS to RADOS objects and applies computation on those objects directly,
bypassing the POSIX layer. In the storage plugin, we reuse the ParquetFileFormat of
Arrow out-of-the-box to scan RADOS objects containing Parquet binary data. Generally,
Arrow APIs cannot scan RADOS objects. However, we make this possible by creating a thin
random-access filesystem shim called the RandomAccessObject API that wraps a RADOS
object, keeps track of the file pointer, and provides a file-like view over the objects. This
interface plugs into Arrow APIs seamlessly and allows scanning objects as files. One exception
for Skyhook is that it requires files to be written in a specific way. To be able to scan Parquet
files with Skyhook, they should be self-contained within a single RADOS object. This 1 : 1
mapping is required to be able to translate filenames into object IDs easily and to let Arrow
APIs scan a RADOS object as a complete Parquet file, as Arrow APIs cannot scan multiple
physical files as a single logical file. To ensure every file goes into a single object while writing
files to CephFS, we change the stripe unit of CephFS to match the size of the Parquet files
being written. The architecture of Skyhook is given in Figure 2.
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3 Experiments

In this section, we describe our experiment setup, how we perform our experiments, and
our observations. We perform 2 kinds of experiments to show CPU and network bandwidth
savings from offloading compute to the storage layer. The experiments were performed on
CloudLab, the NSF-funded bare-metal-as-a-service infrastructure [DRM+19]. For our exper-
iments, we exclusively used machines with an 8-core Intel Xeon D-1548 2.0 GHz processor
(with hyperthreading enabled), 64 GB DRAM, a 256 GB NVMe drive, and a 10 GbE network
interface. These bare-metal servers are codenamed “m510” in CloudLab. We used Ceph octo-
pus v15.2.16 on Ubuntu 20.04 (Linux kernel 5.4.0−100-generic) along with Skyhook v0.4.0 for
our experiments. We used Ceph clusters of sizes 1, 8, and 16 for our experiments as these sizes
are pretty common for a standard Ceph deployment. Every storage server had a single Ceph
OSD running on the local NVMe drive. We configured the OSDs to use 8 threads to prevent
any contention due to hyperthreading in the storage servers. The number of placement groups
was increased from 128 to 512 to prevent contention from PG locking. A CephFS interface
was created on a replicated data pool and was mounted in user mode using the ceph-fuse

utility. We repeat each experiment 5-10 times to produce somewhat statistically significant
results.

3.1 CPU Frequency

One of the goals of this paper is to find out the minimum amount of processing capability
required per storage server CPU to be able to generate the same performance as a fast
client-side CPU can provide. We take Skyhook as our computational storage system and
execute queries to select 1% of the rows both on the client and the server-side. We use the
cpufrequtils toolchain provided by Linux to change the CPU speed on the storage servers.
We discuss how to use this tool in detail in Appendix A. Since the lowest frequency that we
can set our cores at was 800 MHz, we performed our experiments in the frequency range of
800 MHz and 2000 MHz. We repeated this experiment on a Skyhook cluster of 1, 8, and 16
storage servers respectively to find out how much CPU one can save per server by scaling
out. We performed weak scaling by increasing our dataset size slowly to twice the number of
files as we scaled out from 8 to 16 storage servers. Our dataset was comprised of replicated
32MB uncompressed Parquet files containing data from the infamous NYC taxi dataset [yel].
Each file consisted of 1.4 million rows and 17 columns. For every cluster size, we start with
a client-side query execution with both the client and server-side CPUs at 2000 MHz. Then
we perform a storage side query execution with both the sides still at 2000 MHz. After that,
we slowly tune down the storage side CPU frequencies by a difference of 200 MHz at each
step and perform storage side query executions for each step. We repeat this till we find
the query performance to match the client-side query execution at 2000 MHz on both sides.
We observe that in a single server Skyhook cluster, we cannot use a low-power CPU on the
storage because there is only a single storage layer CPU to match the client CPU, so both
their frequencies should be the same. On the other hand, when we have a cluster with 8 and
16 servers respectively, we can tune down the CPU frequencies to about 1100 MHz and 800
MHz respectively, and still get similar or better performance. Ideally, for the 16 server cases,
we should have been fine running the storage server CPUs at 600 MHz but the kernel only
allowed us to tune down the CPUs to 800 MHz. Figure 3 shows our observations for this
experiment.
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Figure 3: Latency vs Storage server CPU frequency plot for a Skyhook (storage-side) query
execution with 1% query selectivity. One exception is that the leftmost bar (**) in every plot
shows the latency of a client-side execution with a 2000 MHz CPU serving as the baseline.
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3.2 Network Bandwidth

We performed an experiment to find out if offloading compute with Skyhook allows using
a network with less bandwidth. We used a setup with 8 storage nodes and a dataset of
460 Parquet files similar to the CPU experiment above and performed 1% row selectivity
experiments. We used the wondershaper Linux utility to constrain bandwidth at the network

interfaces of the client and storage servers. Appendix B shows how to use the wondershaper

utility. We start with a client-side query execution with all interfaces at 10 Gbps, then we do
a server-side execution, and then we constrain the network interfaces on both sides to 5 Gbps
and perform a server-side execution again. Unfortunately, after constraining the bandwidth
to 5 Gbps, the query performance did not stay the same as before constraining but dropped
by a factor of more than 10. Ideally, performance should not be hampered by moving to low
bandwidth networks in computational storage systems, but this observation was unexpected
and we aim to find out the reason behind this in future work. For now, we think that thinning
the network resulted in the storage layer not being able to accept as much requests as it should
be to maintain the query performance.

3.3 Cost

In our experiments, we show that CPUs with less power can be used on the storage servers
in a computational storage system. We observe that a storage side CPU of about 1100 MHz
and 800 MHz suffices for a cluster of 8 and 16 servers respectively instead of a 2 GHz CPU.
According to Intel’s website, a 8-core Xeon D-1548 (2 GHz) processor costs $594, whereas a 2-
core Intel Celeron 847 (1.1 GHz) costs $134 and an Intel E2160 Pentium Dual-Core Processor
(800 MHz) costs only about $90. This shows that a lot of infrastructure costs can be saved
by moving to computational storage and the savings become even more significant in large
clusters.

4 Conclusion and Future Work

This paper studies resource savings that computational storage systems can bring in terms
of CPU and network bandwidth as compared to systems where computation happens on the
client. We use Skyhook as our candidate computation storage system for performing the
experiments. Our results show that using computational storage certainly helps save CPU
resources on the storage servers and the savings increases as we scale out and distribute our
computation across more storage servers. This shows that there is a real possibility of using
low-power chips such as FPGAs embedded on SSDs for compute offloading. We performed
experiments to find out if a thinner interconnect can be used while preserving the performance
in computational storage systems, where we found that it cannot be done, and moving to
lower bandwidth networks affects performance severely. Regardless, from previous literature,
we know that moving to computational storage allows saving network bandwidth which other
applications can use, and this becomes particularly important in data centers where the servers
might be far away from each other, such as on different racks. In future work, we need to
perform these experiments on actual Smart SSDs (SSDs embedded with FPGAs), so that we
can collect metrics that would help create a model of performance versus Smart SSD power.
Besides trying to complete the unfinished work of achieving competitive performance in low
bandwidth networks, we also need to experiment with faster network interconnects such as
40 Gbps or 100 Gbps links to be able to understand the effect of computational storage in
high-speed networks.
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A Manipulating CPU frequency

We use the cpufrequtils toolchain provided by Linux to change the CPU frequency on
the storage servers. To be able to use this tool, we first need to ensure that the userspace

governor is enabled in the kernel. This can be checked by executing the command below:

cat /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

If there is no userspace governor enabled, it means that the machine is using the new

intel pstate driver which only has the powersave and performance governors. To be

able to enable the userspace governor, we need to disable the intel pstate governor first.

This can be done by adding intel pstate=disable in /etc/default/grab , followed by

an update-grub and a reboot. Upon reboot, the userspace governor should be available
and we can now use cpufrequtils. Given below is an example to change the frequency of Core
0 to 1000 MHz.

sudo cpufreq-set -c 0 -f 1000MHz

B Manipulating network interface bandwidth

We use the wondershaper utility to constrain our network interfaces to a certain network

bandwidth. Before using wondershaper , we first need to find the network interface that

we are interested in using the Linux utility ifconfig . Then we need to clear any previous

setting on the network interface, for example, eno1d1 , by executing the command as shown
below.

sudo wondershaper clear eno1d1

Now, we can go ahead and set the upload and download bandwidth on the network interface
by executing a command similar to the one shown below. wondershaper takes the upload
and download bandwidth values in Kbps.

sudo wondershaper eno1d1 5120000 5120000

In this case, we constrain both the upload and download bandwidth on eno1d1 to 5 Gbps.
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