
Benchmarking the Flight Transport Protocol
in Different Languages

Jayjeet Chakraborty, Nayan Sanjay Bhatia, Yash Rajesh Chhabria
jayjeetc@ucsc.edu, nbhatia3@ucsc.edu, ychhabri@ucsc.edu

March 8, 2022

1 Introduction

Apache Arrow [15] is a language-agnostic in-memory data format used for
moving structured data between different systems without the need for seri-
alization and deserialization. The project aims to be a standard data format
that different systems use when exchanging data amongst themselves. It is
an open-source project and was released in 2016. Then onwards, the project
has grown to become more than an in-memory data format. Over the years,
it developed into a framework of data processing components that can be put
together to create a data processing system. Several components from the
framework is used by modern data processing systems such as Spark [18],
Dask [14], Ray [12], and Ballista [6]. One such component of the Arrow
framework is Flight [5]. It is a gRPC-based protocol for transferring tabular
data over the network very fast. Flight was announced in 2019 and has been
adopted by popular data companies like Dremio since then. Similar to Arrow,
the Flight framework is also available in different programming languages
such as C++, Java (via JNI), Python (via Cython), R and Rust. In this
project, we implement a client-server application with Flight in C++, Java,
and Python and performed benchmarking experiments to compare the per-
formance of a Flight application written in different programming languages.
We report metrics such as latency, CPU usage, and network throughput along
with a discussion on the developer experience of using different programming
languages to create a modern data transfer application. The contributions
of our work are as follows:

1



• Implementation of a Flight client-server application in C++, Java, and
Python. The link to the GitHub repository is given here.

• Performance comparison of the 3 different implementations based on
the programming language they were written in. The performance
comparison comprises of latency, CPU usage, and network throughput
numbers.

• A discussion on the development experience of the 3 different implemen-
tations where we report metrics such as lines-of-code and development
time breakdown.

2 Motivation

We have been interested in modern storage and data-processing system’s
lately and we aim to learn more about the state-of-the-art in these areas.
The Apache Arrow and Flight framework is a relatively recent development
in this area which we are interested in as a team. We decided to leverage this
project as an opportunity to learn more about these technologies and hence
we decided to build a client-server application in the different languages it
supports and benchmark them. We believe this was a bold first step for us
in experimenting more with these technologies in the future.

3 Background

3.1 Apache Arrow

Apache Arrow is an in-memory columnar format optimized for efficient an-
alytics operations on modern hardware. It describes a standard data format
for exchanging structured data between different systems. Besides being an
in-memory format, it is also a collection of different data processing com-
ponents that allow building parts of a data processing system. Some of the
most-used components are: Flight, a gRPC-based data transfer protocol;
Feather, A Arrow-based columnar persistent storage format [17]; Gandiva,
An LLVM-based expression compiler [4]; Dataset API, An abstraction for re-
alizing datasets over a directory of files. Arrow is also language-independent
as it has APIs in several different programming languages such as C++,

2

https://github.com/JayjeetAtGithub/arrow-flight-benchmark


Java, Python, Rust, R, JavaScript, and Julia. Several popular data process-
ing systems such as Spark, Dask, Ray, Pandas, Parquet have added support
for Arrow data and Arrow data sources. [8]

3.2 Flight

Arrow Flight is a framework used for building applications to exchange Arrow
data streams. Flight takes advantages of the bidirectional streaming support
of gRPC [16], which allows clients and servers to send and receive data and
metadata to each other simultaneously while maintaining high performance.
Flight allows for highly efficient data transfer as it: 1) removes the need for
deserialization on the client-side 2) It allows for sending data in a parallel
streaming fashion 3) And, allows taking advantage of the Arrow columnar
format. When a Flight client connects to a Flight server, it first requests a
flight descriptor containing all the metadata about the server and the dataset
using the GetFlightInfo function defined in the server. It then invokes
the DoGet function also defined in the server, to get a file descriptor to
an Arrow data stream which eventually produces Arrow record batches on
iterating. The GetFlightInfo and DoGet are RPC methods that the Flight
client invokes. The received Arrow record batches are then materialized into
an Arrow table for further processing. The execution flow of a Flight client-
server setup is shown in Figure 1.

Figure 1: Execution Flow of Arrow Flight [5].

3



4 Implementation

We implemented a Flight client and server as the main component of the
project. The client and server communicate over TCP/IP using the gRPC
RPC protocol. Flight transports data in the form of modified Protocol
Buffers [13], a protocol buffer version with some performance tweaks. On
the server-side, we use the Arrow Dataset API [2] to read from a directory
of Parquet [1] files. The Dataset API is another component of the Arrow
framework that allows discovering and reading large and deep hierarchies of
datasets containing several partitions. During execution, the Dataset API
reads a datasets in batches of records sequentially and sends back the record
batches to the client through a streaming write API provided by Flight. We
used Parquet files as our data format as Parquet is the data storage format
of choice in most modern data processing systems in the Hadoop ecosystem.
On the client-side, the record batches are retrieved from the Flight streaming
interface and are decoded to in-memory Arrow format. Figure 2 shows the
high-level architecture of our implementation.

Flight Server

Flight Client

DoGet

/mnt/data/parquet

Dataset API

GetFlightInfo
Record Batches

Figure 2: Architecture of a Flight client-server setup.

4



5 Evaluations

We performed our experiments on CloudLab [9], an NSF-funded bare-metal
as a service infrastructure, to evaluate the performance of our implementa-
tions. We used the ”m510” nodes from CloudLab which have 8-core Intel
Xeon-D 2.0GHz processors, 64GB DRAM, 256GB NVMe flash storage, and a
10GbE network interface. The most important aspect of our evaluations were
to measure the latency of running a 100% selectivity query where all the rows
of the dataset were read in the server and returned to the client. We used
a dataset of size approx. 1.5GB containing about 100 16MB Parquet files.
The Parquet files were snappy compressed and comprised of data from the
infamous NYC taxi dataset. The client and the server ran in different servers
and communicated over the private network of 10GbE bandwidth. We ran
15 iterations for each experiment to get somewhat statistically significant re-
sults. We ran the experiments in sequential mode to prevent any performance
variations due to Python’s GIL or any other kind of lock contention due to
multi-threading. Also, for all the 3 different implementations, we tried to
keep the different parameters such as batch_size and fragment_readahead

consistent, for a fair comparison.

5.1 Performance Comparison

As shown in Figure 3, the C++ and Python implementations performed sim-
ilarly. This signifies that the Cython [7] wrappers have negligible overhead.
Initially, we were not using compiler-optimized libraries for the C++ imple-
mentation and that resulted in the C++ version to run slowly. We then
raised our issue in the Apache Arrow mailing list and we received guidance
on our issue. We then used the compiler-optimized libraries from the Python
package of Arrow and were able to get similar results in C++ and Python.
This experience reveal that it is really important to have similar optimiza-
tions when comparing same applications written in different programming
languages.

During our performance evaluations, we found out the Java implementa-
tion to be the slowest one. This observation can be attributed the JVM as
it is known for cold starts which slows down JVM-based applications signif-
icantly. The Java version of Arrow uses the Java Native Interface [19] [11]
or JNI to call classes and methods defined in C++ shared libraries. It is
basically a wrapper over the C++ libraries. The JNI interface is known to

5



have a significant performance overhead as the JVM cannot apply a lot of
optimizations to the C++ functions as it does for Java functions. Also, the
JNI interface results in a lot of data copying between the C++ and JVM
layers, hurting the performance even more. [3]

We also observed the CPU and Network utilization of our system while
running the experiments. We found that all of C++, Java, and Python use
about 90% of the system’s CPU. This shows that neither language has a
substantial CPU overhead over the other. We also noted almost similar net-
work throughput with all the 3 language implementations where the network
throughput came out to be about 300-400MB/s.

Programming Languages Implementation

La
te

nc
y(

s)

Java C++ C++ (Optimized) Python

Figure 3: Query latency of reading 100% of the rows in C++, Python, and
Java.

5.2 Development Experience

In this section, we discuss the experience we had as developers while using 3
different languages to implement a similar application. All the Pros and Cons
mentioned below are purely based upon our experience during the project.

Figure 4 shows the amount of time spent in developing the 3 versions
of our Flight client-server setup. We see that Java took the most time due

6



Ti
m

e 
S

pe
nt

 (H
rs

)

Python C++ Java

Development Time

Figure 4: Development time of a Flight client-server in C++, Python, and
Java.

0

100

200

300

400

Python C++ Java

Lines of Code

Figure 5: Lines of code in a Flight client-server setup in C++, Python, and
Java.

7



the heavy debugging effort that went into it. Python took the least time as
expected due to its user-friendliness. C++ development did not take much
time, but we were having some issues with the compiling and linking of C++,
which ended up taking a little bit long. The share of the total time that went
into the different phases of development is shown in Figure 6.

In Figure 5, we show the lines of code that each implementation took. As
expected, the Java implementation took the most lines of code followed by
C++ and Python.

Writing code Finding the Language specific API's Fixing Bugs

Building the Project Benchmarking and Performance Engineering

Share of Time

Figure 6: Development time breakdown of a Flight client-server setup.

5.2.1 C++

Pros:

• The C++ library had a high-velocity community around, leading to
most developed APIs, great documentation, and good community sup-
port. This was mostly because the core of Arrow is written in C++.

• Writing in C++ also helped us learn a lot of intricacies of the language
such as command-line arguments, use of smart pointers, and importing
and linking with external libraries.

8



Cons:

• Writing C++ in an efficient manner is actually quite hard. So, if not
very necessarily required, it’s better not to use C++ and rather adopt
some easy-to-use programming language such as Python.

• Debugging C++ code is also very hard due to it’s poor stacktrace
support. Especially, in the case of errors such as Segmentation Fault
where it is required to use debuggers such as gdb and valgrind to fix
the issues.

• Compiling and Linking with 3rd-party libraries is also not straightfor-
ward in C++ due to it’s lack of user-friendly packaging support.

5.2.2 Python

Pros:

• Python libraries are always in high-demand due to their demand in
Data Science/ML/AI applications. For that same reason, the commu-
nity responsible for the Arrow Python libraries were very active and
had created great documentation.

• The sleek library import system of Python makes it easy to use 3rd
party libraries in Python code without any compiling/linking hassle.

• Code written in Python usually has less lines of code than C++ and
Java. This helps save time when prototyping and evaluating ideas and
that’s the reason why Python is a popular scripting language.

Cons: While doing our project, we didn’t really face any challenges with the
Python implementation.

5.2.3 Java

Pros:

• Java has great IDEs such as IntelliJ that makes developing Java an
easy and intuitive experience.

9



• Since Java runs in the Java Virtual Machine (JVM), there isn’t gener-
ally any platform specific issues in Java as in other languages such as
C/C++.

• Similar to Python, Java also has a huge library of utilities which makes
developing complex applications relatively easy and does not require
importing a lot of 3rd-party libraries which could easily become a soft-
ware engineering hassle.

Cons:

• Coding in Java is very verbose and sometimes leads to complex and
difficult to read code.

• Java packaging systems maven is decades old and often leads to tran-
sient errors when run outside of an IDE. Also, the package repositories
of Java are sometimes outdated and broken.

6 Future Work

As future work, we aim to compare the performance of Arrow’s native seri-
alization/deserialization based data transfer with Arrow Flight. This would
help us understand if how much of an performance improvement does Ar-
row Flight provide over native Arrow data transfer. We would also like to
augment our study of the client-server performance in different programming
languages with a Flame Graph [10] for each language implementation. Such
root cause analysis will help us better understand the reasons behind the
performance difference observation. Rust is a language which is gaining im-
mense reputation in the system’s research community. Since, both Arrow
and Flight has libraries in Rust, we would like to implement a Rust-based
Flight client and server, benchmark it, and compare with the results of the
C++, Java, and Python implementations.

7 Conclusion

Arrow Flight is a modern gRPC-based data transport protocol developed
to efficiently transfer Arrow datasets over the network. It was developed
as an improvement over traditional JDBC/ODBC protocols which are more

10



suited for OLTP-style data access. The Flight protocol aims to optimize
OLAP-style access over the network where large column chunks are trans-
ferred at once. In this work, we leverage the Flight framework to implement
client-server applications in 3 different programming languages to transfer
Arrow data over the wire. We measure metrics such as query latency, CPU
utilization, and network throughput. We find that the C++ and Python im-
plementations perform similarly while the Java implementation is quite slow
because of the JVM and JNI overheads. The fact that C++ and Python
implementations are equally performant signifies that the Cython wrappers
which the Python version of Arrow uses, does not have a significant overhead.
Besides quantitative evaluations, we also discuss the development experience
that we went through when implementing the client-server in the different
languages. We experienced Python to be the most developer/user friendly,
followed by C++ and Java.

References

[1] Apache parquet. https://parquet.apache.org/.

[2] Arrow dataset api. https://arrow.apache.org/docs/python/

dataset.html.

[3] Understand the overhead of jni. http://golangcloud.blogspot.com/
2012/05/understand-overhead-of-jni.html, 2012.

[4] Gandiva: A llvm-based analytical expression compiler for apache arrow.
https://arrow.apache.org/blog/2018/12/05/gandiva-donation/,
2018.

[5] Introducing apache arrow flight: A framework for fast data
transport. https://arrow.apache.org/blog/2019/10/13/

introducing-arrow-flight/, 2019.

[6] Ballista: A distributed scheduler for apache arrow. https://arrow.

apache.org/blog/2018/12/05/gandiva-donation/, 2021.

[7] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin,
Dag Sverre Seljebotn, and Kurt Smith. Cython: The best of both worlds.
Computing in Science & Engineering, 13(2):31–39, 2010.

11

https://parquet.apache.org/
https://arrow.apache.org/docs/python/dataset.html
https://arrow.apache.org/docs/python/dataset.html
http://golangcloud.blogspot.com/2012/05/understand-overhead-of-jni.html
http://golangcloud.blogspot.com/2012/05/understand-overhead-of-jni.html
https://arrow.apache.org/blog/2018/12/05/gandiva-donation/
https://arrow.apache.org/blog/2019/10/13/introducing-arrow-flight/
https://arrow.apache.org/blog/2019/10/13/introducing-arrow-flight/
https://arrow.apache.org/blog/2018/12/05/gandiva-donation/
https://arrow.apache.org/blog/2018/12/05/gandiva-donation/


[8] Jayjeet Chakraborty, Ivo Jimenez, Sebastiaan Alvarez Rodriguez,
Alexandru Uta, Jeff LeFevre, and Carlos Maltzahn. Skyhook: Towards
an arrow-native storage system. CCGrid, 2022.

[9] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design and operation of
CloudLab. In Proceedings of the USENIX Annual Technical Conference
(ATC), pages 1–14, July 2019.

[10] Brendan Gregg. The flame graph: This visualization of software execu-
tion is a new necessity for performance profiling and debugging. Queue,
14(2):91–110, 2016.

[11] Sheng Liang. The Java native interface: programmer’s guide and speci-
fication. Addison-Wesley Professional, 1999.

[12] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I. Jordan, and Ion Stoica. Ray: A distributed framework for
emerging ai applications. In Proceedings of the 13th USENIX Confer-
ence on Operating Systems Design and Implementation, OSDI’18, page
561–577, USA, 2018. USENIX Association.

[13] Sran Popić, Dražen Pezer, Bojan Mrazovac, and Nikola Teslić. Per-
formance evaluation of using protocol buffers in the internet of things
communication. In 2016 International Conference on Smart Systems
and Technologies (SST), pages 261–265. IEEE, 2016.

[14] Matthew Rocklin. Dask: Parallel computation with blocked algorithms
and task scheduling. In Proceedings of the 14th python in science con-
ference, volume 126. Citeseer, 2015.

[15] Arrow Development Team. Apache arrow. https://arrow.apache.

org, 10 2018.

[16] Xingwei Wang, Hong Zhao, and Jiakeng Zhu. Grpc: A communication
cooperation mechanism in distributed systems. ACM SIGOPS Operating
Systems Review, 27(3):75–86, 1993.

12

https://arrow.apache.org
https://arrow.apache.org


[17] Hadley Wickham. Feather: A fast on-disk format for data frames for
r and python, powered by apache arrow. https://www.rstudio.com/

blog/feather/.

[18] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker,
Ion Stoica, et al. Spark: Cluster computing with working sets. HotCloud,
10(10-10):95, 2010.

[19] Hongze Zhang. Arrow-7808: [java][dataset] implement dataset java api
by jni to c++. https://github.com/zhztheplayer/arrow-1/tree/

ARROW-7808. Accessed: 2020-09-14.

13

https://www.rstudio.com/blog/feather/
https://www.rstudio.com/blog/feather/
https://github.com/zhztheplayer/arrow-1/tree/ARROW-7808
https://github.com/zhztheplayer/arrow-1/tree/ARROW-7808

	Introduction
	Motivation
	Background
	Apache Arrow
	Flight

	Implementation
	Evaluations
	Performance Comparison
	Development Experience
	C++
	Python
	Java


	Future Work
	Conclusion

