
Jayjeet Chakraborty, Carlos Maltzahn
University of California, Santa Cruz

Skyhook: Managing Columnar Data 
Within Storage



Problem

● Exploratory data analysis requires a dataset to be viewed in different ways
○ Derived columns
○ Different subsets of columns

● Current practice: datasets are copied to create new views
○ Increases overall analysis time 
○ Uses up unnecessary space
○ Requires manual work to relate copies to each other 
○ Difficult to keep track of how the data evolved over time
○ Makes workflows more complex

2



Our Vision

● Dataset “repositories” that support different views over the same data without 
extra copying

○ Process data directly over data lakes without ingesting into databases
● Support version control of data through time travel, roll back, schema 

evolution using transactions
● Create and track views and their provenance
● Ability to join (e.g. different compression levels of) datasets
● Scalable and distributed data processing
● And, reduced data movement over the entire system

3



Challenges with High Energy Physics Data

● Huge sized data, large number of columns, most with embedded values
● Complex nested schema does not fit into traditional RDBMS systems
● Systems need to fit well into the Python ecosystem
● Leverage latest data management and processing technologies

Our vision seems to fit well in solving data management 
challenges of HEP data !

4



Solution

● Zero-Copy In-Memory Data Format
○ Eliminate serialization costs while moving data between different processes 

● Distributed Active Storage Layer
○ Reduce data movement by filtering data within the storage layer

● Distributed Compute Layer
○ Distributed compute operations such as Joins, GroupBy using MapReduce/BSP over 

MPI/UCX/RDMA
● Transactions over Datasets: Lakehousing

○ Features of warehousing such as transactions, views, time travel, schema evolution but 
directly over data lakes

● Expressive Query interface and Query compiler
○ Different query interfaces generating standard query plans acceptable by popular data 

processing systems
5



Implementation Plan

6



Implementation Plan

7



Skyhook Architecture

8



Current Status: Skyhook upstreamed in Apache Arrow !

9

https://arrow.apache.org/blog/2022/01/31/skyhook-bringing-computation-to-storage-with-apache-arrow/
https://jayjeetc.medium.com/skyhookdm-is-now-a-part-of-apache-arrow-e5d7b9a810ba


Acknowledgements

This work was supported by the National Science Foundation under Cooperative 
Agreement OAC-1836650 (IRIS-HEP.org), and the Center for Research in Open 
Source Software, UC Santa Cruz (cross.ucsc.edu)

10



Thank You
jayjeetc@ucsc.edu

https://iris-hep.org/projects/skyhookdm.html

11

mailto:jayjeetc@ucsc.edu


Zero-Copy In-Memory Data Format

● For efficient processing of HEP data, the data needs to be stored in a 
zero-copy in-memory format where

○ The In-memory and on-the-wire format is equivalent
○ There is no need of serialization while moving data between different processes
○ Supports SIMD processing

12



Zero-Copy In-Memory Data Format

● For efficient processing of HEP data, the data needs to be stored in a 
zero-copy in-memory columnar format where

○ The In-memory and on-the-wire format is equivalent
○ There is no need of serialization while moving data between different processes
○ Supports SIMD processing

13



Zero-Copy In-Memory Data Format

● For efficient processing of HEP data, the data needs to be stored in a 
zero-copy in-memory format where

○ The In-memory and on-the-wire format is equivalent
○ There is no need of serialization while moving data between different processes
○ Supports SIMD processing

14



Distributed Active Storage Layer

● Offload tasks like filters, projections, aggregations to the storage layer
○ Get back scalability and performance by putting idle storage layer CPUs to use
○ Pivot client CPU resources from costly data decoding and decompression to useful operations 

like Joins
○ HEP datasets are huge: active storage saves network bandwidth by filtering data early in the 

stack.

15



Distributed Active Storage Layer

● Extend client and storage layers 
of programmable storage 
systems with data access 
libraries

● Embed a FS shim inside storage 
nodes to have file-like view over 
objects

● Make object class extensions 
directly available to the clients 
without having to change the FS

16



Using Skyhook from Arrow

Skyhook supports file 
formats that are supported 
by Arrow out-of-the-box

○ Parquet, CSV, JSON, 
Feather

17



Distributed Compute Layer

● Joins, groupby, aggregation, shuffle, and all pandas operations over HEP 
data

● Support distributed versions of these compute operations using map/reduce 
or BSP semantics over MPI/UCX

18



Distributed Compute Layer

● Joins, groupby, aggregation, shuffle, and all pandas operations over HEP 
data

● Support distributed versions of these compute operations using map/reduce 
or BSP semantics over MPI/UCX

19



Transactions over Datasets: Lakehousing

● Data warehouse features over a data lake 
● Features of warehousing such as transactions, views, time travel, schema 

evolution but directly over data lakes
○ No need of ingesting data into data warehouses

● Adds a WAL (Write Ahead Log) to the Dataset for supporting transactions: 
updates/appends/deletes: Table format

20



Transactions over Datasets: Lakehousing

● Data warehouse features over a data lake 
● Features of warehousing such as transactions, views, time travel, schema 

evolution but directly over data lakes
○ No need of ingesting data into data warehouses

● Adds a WAL (Write Ahead Log) to the Dataset for supporting transactions, 
updates/appends/deletes: Table format

21



Transactions over Datasets: Lakehousing

22



Expressive Query interface and Query compiler

● Different compute/query execution engines can be used over storage systems 
to perform complex compute operations.

● Different engines have different query interfaces:
○ Pandas-style dataframe interface
○ SQL interface

● A single query interface that supports different kinds of queries and compute 
operations should compile queries into a standardized query plan which is 
accepted by the query executions engines

23



Expressive Query interface and Query compiler

● Substrait.io: Well-defined, cross-language specification for data compute 
operations. Used to communicate a query plan between a SQL/DataFrame 
interface and a query execution engine in a serialized format

● Ibis and Apache Calcite: These projects translate queries in Python and SQL 
to a substrait query plan.

24

http://substrait.io
https://ibis-project.org/docs/3.1.0/
https://calcite.apache.org/

