I.I[: SHNIH EH”Z E?\%ﬁirqeering

DOMA R/D and Analysis
Grand Challenge

Jayjeet Chakraborty, Carlos Maltzahn
UC Santa Cruz

Today’s Agenda

HL-LHC and DOMA

Malloy QL for HEP data analysis
Data management using Skyhook
Ongoing Work..

The HL-LHC

e High-Luminosity Large Hadron Collider
e Major upgrade to the original LHC
e To be started in around 2028-2029

e 5-7.5x increase in the number of collisions

e Will generate an increased number of events,
about 30x increase

e Total working dataset sizes will be in exabytes

https://home.cern/resources/faqs/high-luminosity-lhc

DOMA Team at IRIS-HEP

e Working on R/D of data delivery,

access, organization, and E Data Fagtory/source
(e.g. TO or sim)
management technologies .P- Data Store/Lake
e Several projects within DOMA: fitslligent Dafa
o XCache 03 |7 Delivery Service (iDDS) 9
q
o Coffea Data Cache
o IDDS Compute Nodes/
o TPC Ilul orp)s:a(-)sinises
o SeviceX
o Modelling Data Workflows \ Service ek
o SkyhookDM d§b = e
Powes
Neall EalfSvroodiEal|
HPC Analysis Grid

Facility Site

https://iris-hep.org/doma.html

Malloy QL for HEP data analysis

Row

Data sample emitted by the HL-LHC

ST

o

run

194711
19471
19471
194711
194711
194711
194711
194711

Fields of primitive types (int, float,
etc), structs, and list<structs>
Primary key: event
Originally stored in ROOT files, but
we use Parquet for analysis

luminosityBlock ~event
4 Vi

299
299
299
299
299
299
299
299

263599382
263599382
263599382
263599382
263599382
263599382
263599382
263599382

VA

METpt

8.16232967...
8.16232967...
8.16232967...
8.16232967...
8.16232967...
8.16232967...
8.16232967...
8.16232967...

4

MET phi

1.53420329..
1.53420329..
1.53420329...
1.53420329...
1.53420329...
1.53420329...
1.53420329...
1.53420329...

MET.sumet

358.935546...
358.935546...
358.935546...
358.935546...
358.935546...
358.935546...
358.935546...
358.935546..

Msignificance
4 4

0.60561221...
0.60561221...
0.60561221...
0.60561221...
0.60561221...
0.60561221...
0.60561221...
0.60561221...

MET.CovXX

108.264114..
108.264114..
108.264114..
108.264114..
108.264114..
108.264114..
108.264114..
108.264114..

. MET.CovXY

9.5036792...
9.5036792...
9.5036792...
-9.5036792...
-9.5036792...
-9.5036792...
9.5036792...
9.5036792...

V3

MET.CovYY

111.555229...
111.555229...
111.555229...
111.555229...
111.555229...
111.555229...
111.565229...
111.565229...

<>

v VvV VvV VvV VvV VvV VvV v

Field name
run

luminosityBlock

event

MET
HLT

PV
Muon
Electron
Photon
Jet

Tau

Type

INTEGER
INTEGER
INTEGER
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD

RECORD

DETAILS PREVIEW
T event
v MET
pt
phi
sumet
significance
CovxX
Covxy
Covvy
b HT
» PV
v Muon
v list
v element
pt
eta
phi
mass
charge

pfRellso03_all

LINEAGE

INTEGER

RECORD

FLOAT

FLOAT

FLOAT

FLOAT

FLOAT

FLOAT

FLOAT

RECORD

RECORD

RECORD

RECORD

RECORD

FLOAT

FLOAT

FLOAT

FLOAT

INTEGER

FLOAT

Present Query Languages in HEP analysis

e Basic requirements:
o Independent on the underlying file format or data structures
o lIdentical query interface irrespective of whether executing locally or remotely, or single or
multiple machines

e Examples:
o Func ADL (Python)
Groot (Go)
RDataFrame (C++)
NAIL (Natural Analysis Implementation Language) (Python)
SQL

o O O O

Example Analysis Query in SQL

SELECT
HistogramBin (MET.pt, 0, 2000, 100) AsS x,
COUNT (*) AS y
FROM table
WHERE ARRAY LENGTH (Muon) >= 2 AND
(SELECT COUNT (*) AS mass
FROM UNNEST (Muon) ml WITH OFFSET i
CROSS JOIN UNNEST (Muon) m2 WITH OFFSET j
WHERE

ml.charge <> m2.charge AND i < j AND

SQRT (2*ml .pt*m2 .pt* (COSH (ml.eta-m2.eta) -COS (ml.phi-m2.phi))) BETWEEN 60

AND 120) > 0
GROUP BY x

ORDER BY x

10.0

30.0

50.0

70.0

39

15

Example Analysis Query in Python

class Q5Processor(processor.ProcessorABC):
def process(self, events):

mupair = ak.combinations(events.Muon, 2)

with np.errstate(invalid="ignore"):
pairmass = (mupair.slot0 + mupair.slotl).mass

goodevent = ak.any(
(pairmass > 60)
& (pairmass < 120)
& (mupair.slot0.charge == -mupair.slotl.charge),
axis=1,

)

return (
hist.Hist.new.Reg(100, 0, 200, name="met", label="$E {T}"{miss}$ [GeV]")
.Double()
.fill(events[goodevent).MET.pt)

)

def postprocess(self, accumulator):
return accumulator

out, metrics = run(Q5Processor)
out.plotld()
metrics

X y
10.0 39
30.0 15
50.0 2
70.0 1

Example Analysis Query in Python

class Q5Processor(processor.ProcessorABC):

def process(self, events):

mupair = ak.combinations(events.Muon, 2)
with np.errstate(invalid="ignore"):

pairmass = (mupair.sl

goodevent = ak.any(
(pairmass > 60)
& (pairmass < 120)
& (mupair.slot0.cha
axis=1,

)

return (
hist.Hist.new.Reg(1l
.Double()
.fill(events[goodev

)

def postprocess(self, accum

return accumulator \\\\\¥

out, metrics = run(Q5Processor)
out.plotld()
metrics

10.0

Learning and using different language and framework
specific query language can be an extra overhead for

Physicists. What if there was a single simple language

?

N

)

39

15

Malloy

e An experimental language for describing data relationships and
transformations

e Allows writing better understandable queries using uncomplicated semantics

e Aims to generate the most optimized SQL query possible for performance

e Works with BigQuery, Postgres, and DuckDB so far

N

https://www.malloydata.dev/

Brief introduction to Malloy’s syntax

e Source: a table or a computation result set
e Query: a pipelined set of stages each stage defining a query operation

Preview

source: hep is table('duckdb:../hep.parquet"')

Run
query: queryl is hep —> {
group_by: x is
floor((pick -1 when MET.pt < @
pick 2001 when MET.pt > 2000
else MET.pt) / 20) *x 20 + 10,
aggregate: y is count(x),
order_by: x
F—> A
project: x, y

¥

12

SQL to Malloy translation: #Q2

SELECT
FLOOR((
CASE
WHEN j.pt < 15 THEN
WHEN j.pt > 60 THEN
ELSE j.pt
END - 0.15) / 0.45) %
COUNT(*) AS vy
FROM '{dataset_path}'
CROSS JOIN UNNEST(Jet) AS
GROUP BY FLOOR((
CASE
WHEN j.pt < 15 THEN
WHEN j.pt > 60 THEN
ELSE j.pt
END - 0.15) / 0.45) %
ORDER BY x;

14.99
60.01

0.45 + 0.375 AS x,

~i(3)

14.99
60.01

0.45 + 0.375

Run
sql: cross_join_sql is {
select: """
SELECT
unnest(Jet) as J,
MET
FROM read_parquet('../hep.parquet')
connection: "duckdb"

}

Run
query: query2 is from_sql(cross_join_sql) —> {
group_by: x is
floor(((pick 14.99 when J.pt < 15
pick 60.01 when J.pt > 60
else J.pt) - 0.15) / 0.45) * 0.45 + 0.375
aggregate: y is count(sx)
order_by: X
F =>4
project: x, y

g

13

SQL to Malloy translation: #Q2

SELECT
FLOOR((
CASE
WHEN j.pt < 15 THEN
WHEN j.pt > 60 THEN
ELSE j.pt
END - 0.15) / 0.45) %
COUNT(*) AS vy
FROM '{dataset_path}'
CROSS JOIN UNNEST(Jet) AS
GROUP BY FLOOR((
CASE
WHEN j.pt < 15 THEN
WHEN j.pt > 60 THEN
ELSE j.pt
END - 0.15) / 0.45) %
ORDER BY x;

14.99
60.01

0.45 + 0.375 AS x,

~i(3)

14.99
60.01

0.45 + 0.375

WITH __stage® AS (
SELECT
(
(floor((((

CASE WHEN cross_join_sql.J."pt"<15 THEN 14.99

WHEN cross_join_sql.J."pt">60 THEN 60.01
ELSE cross_join_sql.J."pt" END))-0.15)
*x1.0/0.45))%0.45)+0.375 as "x",
COUNT(1) as "y"
FROM (
SELECT
unnest(Jet) as J,
MET
FROM '{dataset_path}'
) as cross_join_sql
GROUP BY 1
ORDER BY 1 ASC NULLS LAST
)
SELECT
base."x" as "x",
base."y" as "y"
FROM _ stage@ as base

14

SQL to Malloy translation: #Q4

SELEGT Preview
FLOOR((source: hep is table('duckdb:../hep.parquet') {
GiSE declare: x 1is

WHEN MET.pt < 0 THEN -1 _
WHEN MET.pt > 2000 THEN 2001 floor((pick -1 when MET.pt < 0

ELSE MET.pt pick 2001 when MET.pt > 2000
END) / 20) * 20 + 10 AS x, else MET.pt) / 20) x 20 + 10
COUNT (%) AS y }
FROM '{dataset_path}'
Run
WHERE (
SELECT query: hep —> {
COUNT (%) declare: t is Jet.count() {? Jet.pt > 40} > 1
FROM UNNEST (Jet) group_by: x, event
WHERE Jet.pt > 40 where: t
) > 1
GROUP BY FLOOR((}
CASE —> {
WHEN MET.pt < © THEN -1 group_by: X
WHEN MET.pt > 2000 THEN 2001 aggregate: y is count()
ELSE MET.pt

order_by: x
END) / 20) * 20 + 10

ORDER BY x; b 15

SQL to Malloy translation: #Q4

SELEGT
FLOOR((
CASE
WHEN MET.pt < @ THEN -1
WHEN MET.pt > 2000 THEN 2001
ELSE MET.pt
END) / 20) % 20 + 10 AS X,
COUNT (%) AS y
FROM '{dataset_path}'
WHERE (
SELECT
COUNT ()
FROM UNNEST (Jet)
WHERE Jet.pt > 40
) > 1
GROUP BY FLOOR((
CASE
WHEN MET.pt < @ THEN -1
WHEN MET.pt > 2000 THEN 2001
ELSE MET.pt
END) / 20) % 20 + 10
ORDER BY Xx;

WITH __stage® AS (
SELECGT
((floor((
CASE WHEN hep.MET."pt"<0 THEN -1
WHEN hep.MET."pt">2000 THEN 2001
ELSE hep.MET."pt" END)%1.0/20))%20)+10
as "o,
hep."uid" as "uid"
FROM (SELECT gen_random_uuid() uid, * FROM '{dataset_path}') as hep
LEFT JOIN (select UNNEST(generate_series(1,
100000, —
—— (SELECT genres_length FROM movies limit 1),
1)) as __row_id) as Jet_@ ON Jet_@._ row_id <= array_length(hep."Jet")
GROUP BY 2, 1
HAVING (COUNT(CASE WHEN hep.Jet[Jet_@._ row_id]."pt">40 THEN 1 END)>1)

SELECT
base."x" as "x",
COUNT(1) as "y"
FROM __stage@ as base
GROUP BY 1
ORDER BY 1 asc NULLS LAST

16

Current limitations of Malloy

e Many in-built engine specific functions aren’t implemented yet
o Some functions such as those with lambda expressions also need language parser updates

Bugs in handling lists

No support for UDFs of any form

Bugs in handling struct type field

No support for substrait plan generation

17

Our contributions

e Many in-built engine specific functions aren’t implemented yet
o Some functions such as those with lambda expressions also need language parser updates

Bugs in handling lists

No support for UDFs of any form

Bugs in handling struct type field

No support for substrait plan generation

18

Workload: ADL benchmarks

is-hep-benchmark-athena / queries /

@ ingomueller-net Fix computation of pt of tri-jet in Q6-1.

Name

query-1

query-2

query-3

query-4

query-5

query-6-1

query-6-2

query-7

query-8

Last commit message

Fix histogram bin computation.
Fix histogram bin computation.
Fix histogram bin computation.
Fix histogram bin computation.
Fix computation of invatiant ma
Fix computation of pt of tri-jet il
Fix histogram bin computation.
Fix histogram bin computation.

Fix histogram bin computation.]

[cs.DB] 30 Oct 2021

Evaluating Query Languages and Systems
for High-Energy Physics Data

[Extended Version]
Dan Graur Ingo Miiller Mason Proffitt
Department of Computer Science Department of Computer Science Department of Physics
ETH Zurich ETH Zurich University of Washington
dan.graur@inf.ethz.ch ingo.mueller@inf.ethz.ch masonLp@uw.edu
Ghislain Fourny Gordon T. Watts Gustavo Alonso
Department of Computer Science Department of Physics Department of Computer Science
ETH Zurich University of Washington ETH Zurich
ghislain.fourny@inf.ethz.ch gwatts@uw.edu alonso@inf.ethz.ch

ABSTRACT

In the domain of high-energy physics (HEP), query languages in
general and SQL in particular have found limited acceptance. This
is surprising since HEP data analysis matches the SQL model well:
the data is fully structured and queried using mostly standard op-
erators. To gain insights on why this is the case, we perform a com-
prehensive analysis of six diverse, general-purpose data processing
platforms using an HEP benchmark. The result of the evaluation
is an interesting and rather complex picture of existing solutions:
Their query languages vary greatly in how natural and concise
HEP query patterns can be expressed. Furthermore, most of them

only a small subset of the available attributes, derivation of addi-
tional measures (potentially by joining and reducing the sequences
within the same event), and selection of an interesting subset of
events, which are then summarized using a reduction. HEP data is
thus stored and analyzed in non-first normal form (NF?)—a feature
that early database systems did not support and thus the main rea-
son why relational engines were rejected by physicists historically
(along with the lack of support for used-defined code [39]).
Nowadays, most particle physicists work with a domain-specific
system called the ROOT framework [4, 12], and increasingly so
with its new RDataFrame interface [27]. In ROOT, queries are writ-

19

Benchmarks

Note: Malloy is not particularly designed for better performance, it just tries to generate the most
optimized SQL possible

type
m malloy
| mmm sql

[ee]
o

runtime
w H (6] [e)} ~
o o o o o
1 1 1

N
o
1

=
o
1

o
i

1 2 3 4 7
query_no

https://github.com/JayjeetAtGithub/malloy-hep

Data Management using Skyhook

What is Skyhook ?

e An open-source project aiming to bridge the gap between compute and data

e A data management system that
o Can accelerate queries by offloading parts of query to the storage servers
o Provides a bunch of open-source choices for
m Query interfaces
m Execution engines
m Object storage systems
m File/Table formats
m Communication/Transport protocols
o Presents a lower barrier to computational storage as compared to CSDs

22

https://github.com/skyhookdm

Query Interface and Compiler

dcalcite

SELECT g, SUM(y) AS z
FROM ‘s3://bucket’
WHERE x > 99

GROUP BY g

ORDER BY =z

relations:
read: ‘s3://bucket’
project: g, =z
group by: g
order by: z
aggregate: sum(y) as

23

Query Execution Engine

(@) Velox AR ROW>>>

DATA

FUSION

Query Execution Engine

vV

DATA

FUSK

SIMD based vectorized operations \

Scalar, complex, and nested types such as
maps, structs, lists, tensors

Supports Arrow, Parquet, ORC file
formats

Understands standard query plan

representations such as Substrait /

25

Distributed Object Storage System

File /0 Ceph Metadata Servers
\ /

Object Storage Devices

26

File Format

//o
%/ |CEBERG(D

Parquet

27

Putting ‘em together,

Client

Execution Engine

Skyhook

Object Store

déalcite zih/\m

> |

Query
Plan

Ki“iRow>» (& Velox

DATA

FUSIHON

Query
Plan

Columnar

Data
Buffers

I

KﬁROW>>> O

Ki“iRow>» () Velox

ICEBERGJ

Parquet

Mochi

29

Ongoing Work

Client

Execution Engine

Skyhook

Object Store

dcalcite

Ki“iRow>» (& Velox

DATA

FUSIHON

Query Columndr
Plan

AAAAAA

ARRO

-
>> <§><9Mochl

Ki“iRow>» () Velox

N N

//o
ICEBERGAY 7

Parquet

31

RDMA for Columnar Data Transport

e Accelerating query execution by offloading to storage shifts the bottleneck to

the transport layer
o Most systems use TCP/IP protocols for data transport e.g. Arrow Flight
o Moving data via TCP/IP requires data to be copied multiple times between the device, user

space, and the kernel space
We explore using RDMA for fast zero-copy transfer of columnar data
o We use the Mochi thallium framework from Argonne National Labs for prototyping our protocol

MOChl

32

https://arrow.apache.org/blog/2019/10/13/introducing-arrow-flight/
https://mochi.readthedocs.io/en/latest/thallium.html

Benchmarks

Duration (s)

30 A

25 A

N
o
1

15 -

10 -

flight

selectivity
s 100
B 10
Il

thallium
Transport Mode

33

https://github.com/JayjeetAtGithub/thallium-flight-benchmark

Selectivity is when our query a select a
e n C l I I a r S certain percentage of rows out of every

row group
selecM
30 A s 100
B 10
s 1
25 -
% 20 -
C
.©
©
C 151
a
10 A
5 -
0- .

flight thallium
Transport Mode

https://github.com/JayjeetAtGithub/thallium-flight-benchmark

Selectivity is when our query a select a
e n C l I I a r S certain percentage of rows out of every

row group
selecM
30 A s 100
B 10
s 1
25 -
% 20 -
C
.©
©
C 151
a
10 A
5 -
0- .

flight thallium
Transport Mode

https://github.com/JayjeetAtGithub/thallium-flight-benchmark

Thank You !

Questions ?

36

